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Indices of relative abundance are one of the most important inputs into a stock assessment 
model. For many species, we must rely on several indices that routinely conflict with each other 
and which may result in biased and uncertain outputs. Here, we explored whether reconciled 
trends obtained from dynamic factor analysis (DFA) applied to conflicting indices can be used as 
a trend of relative abundance input into a stock assessment. We simulated an age-structured 
population of two coastal shark species in the southeast United States to generate multiple 
disagreeing indices, reconciled the indices using DFA, and then inserted both the multiple 
conflicting survey indices and the simplified DFA-predicted trend into respective stock 
assessment models. We compared the results of each stock assessment model to simulated values 
to evaluate the relative performance of each approach. We found that the DFA-based assessment 
generally performs similarly to the conflicting index-based assessment and may be a useful 
assessment tool in situations where conflicting indices with different selectivities, catchabilities, 
variances, and missing data are present. DFA assessment results were more consistent across 
simulation scenarios and outperformed many conflicting index assessments when surveys 
underwent shifts in catchability and the underlying stock abundance exhibited contrast. 
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Introduction 
The purpose of a stock assessment is to assess the status of a given stock and provide 
management advice through the synthesis of multiple sources of information using quantitative 
models (Hilborn and Walters, 1992). When assessing the status of a stock, it is worth considering 
the relative importance of component datasets, particularly indices of relative abundance, since 
these are often considered to be key data inputs (Hinton and Maunder, 2003; Francis, 2011; 
Cortés et al., 2015). Indices of abundance serve to establish the trend in abundance for the 
resource over time and are often estimated from fishery-independent survey data. This trend is 
then scaled from relative to absolute abundance within the assessment using other information 
about the stock, including commercial and recreational catches. 

Challenges associated with the biology and fishery dynamics of some species prevent 
logistically feasible and meaningful estimation of indices of abundance. Rare species or those 
with low catchabilities to particular gear types naturally have higher variability in survey catches, 
thereby increasing uncertainty in temporal patterns of the resource (Buckland et al., 2011). 
Particularly short- or long-lived species, which typically correspond to fast- and slow-growing 
species, respectively, require either more frequent sampling or longer time-series to adequately 
measure stock dynamics (Cortés, 2011). Species of low economic value are typically low 
priority, with few resources invested in survey programs and biological sampling regimes, which 
can result in data limitation (Stevens et al., 2000; Field et al., 2009; Cortés et al., 2015). Further, 
species with broad distributions can be challenging to monitor because of distributions that are 
too large to be reasonably assessed using a single survey program (Stevens et al., 2000).  

For wide-ranging species that are not adequately sampled using a single survey, multiple 
spatially limited surveys are typically relied upon to gain a more complete interpretation of 
relative abundance patterns over time. Survey areas smaller than the distribution of the stock 
violate best practices by not surveying the entire population (Hilborn and Walters, 1992). 
Different surveys may utilize different gears or operational protocols, sample in different areas or 
during different times of the year, which result in a separate proportion of the stock being 
available to the unique sampling gear (Maunder et al., 2006; Cook, 2010; Ono et al., 2018). 
When the entire population is not available to the gear, the assumption that survey catches are 
proportional to the total stock abundance may not hold true (Maunder et al., 2006; Wilberg et al., 
2010; Maunder and Piner, 2017). Since each survey is not necessarily measuring the same signal 
in the population, and survey programs experience high levels of uncertainty (process and 
observation error; Maunder and Piner, 2017), it is common for the temporal trends of multiple 
indices of abundance to be in disagreement with each other (Schnute and Hilborn, 1993; Conn, 
2010a). Conflicting trends in relative abundance lead to uncertainty in the status of the resource 
and convey contradictory information to a stock assessment model (Schnute and Hilborn, 1993; 
Conn, 2010a; Francis, 2011).  

The sandbar shark (Carcharhinus plumbeus) is an example of a species with a large 
spatial distribution (Springer, 1960; Heist et al., 1995) which also grows slowly (Sminkey and 
Musick, 1995; Brewster-Geisz and Miller, 2000; Baremore and Hale, 2012), experiences low 
catches, exhibits clear migratory patterns, spatially segregates, and is of relatively low economic 
value (Bigelow and Schroeder, 1948; Springer, 1960; Kohler et al., 1998). In the most recent 
stock assessment (SEDAR, 2017), 11 indices of abundance were included, and an additional 
three indices were considered in the prior assessment (SEDAR, 2011). Unsurprisingly, the 11 
relative abundance indices showed conflicting patterns over time. Using a hierarchical clustering 
approach, the indices were split into two groups: those that generally increased (‘Pos’ indices), 



and those that decreased ('Neg' indices; Courtney, 2017). Each grouping of indices (‘Pos’ and 
‘Neg’) was separately introduced to the sandbar shark assessment model as a unique sensitivity 
run in an effort to characterize various potential states of nature, a largely supported approach to 
dealing with data conflict (Schnute and Hilborn, 1993; Francis, 2011). The base runs with all 
conflicting indices, the ‘Pos’ sensitivity run and the ‘Neg’ sensitivity run, each resulted in a 
different stock status determination; hence, collectively, results obscured the understanding of 
resource status.  

In contrast to large coastal sharks, small coastal sharks, like the Atlantic sharpnose shark 
(Rhizoprionodon terraenovae), generally grow faster and exhibit increased genetic stock 
structure between the Gulf of Mexico and southeastern US Atlantic due to comparatively lower 
movement rates (Loefer and Sedberry, 2003; Davis et al., 2019). Despite decreased home ranges, 
small coastal sharks are still not comprehensively sampled by a single or few surveys. For 
example, SEDAR 34 (2013) used 15 indices of abundance in the base run of the combined 
region assessment for Atlantic sharpnose shark.  

Among other methods, dynamic factor analysis (DFA) has been explored as an approach 
to reconcile conflicting survey indices (Zuur et al., 2003a; Azevedo et al., 2008; Peterson et al., 
2017, 2021). Dynamic factor analysis is a state-space, multivariate, dimension reduction 
approach (Zuur et al., 2003a, 2003b). Notably, Azevedo et al. (2008) used DFA to reconcile 
conflicting patterns among abundance indices of two species of Iberian anglerfish. The DFA-
predicted common trends for the white anglerfish (Lophius piscatorius) were then used as inputs 
into a biomass dynamic assessment model, resulting in a better fitted model as measured by 
residual mean square error, narrower confidence intervals, and lower bias in parameter estimates 
as measured by residual bootstrapping. The authors suggested that DFA could also be explored 
in more complex assessment modeling frameworks (Azevedo et al., 2008).  

We sought to determine if there is validity to reconciling conflicting indices of abundance 
using DFA prior to fitting an assessment model vs. inputting multiple pieces of contradictory 
relative abundance information into an assessment. Despite general advice to manipulate data as 
little as possible prior to fitting an integrated assessment model (Maunder, 2001; Maunder and 
Punt, 2013; Methot and Wetzel, 2013), the incorporation of conflicting abundance indices within 
an integrated assessment model results in data conflict within the model likelihood (Carvalho et 
al., 2021). Current ad hoc approaches to address data conflict within integrated assessment 
models include removing or downweighting conflicting data within the model likelihood, which 
can affect both parameter estimation and the resulting management advice obtained from an 
integrated assessment model. In contrast, the results from this study provide guidance regarding 
the effectiveness of reconciling conflicting indices of abundance before inclusion into a stock 
assessment model, which may serve as both a useful diagnostic for evaluating the effects of data 
conflict on parameter estimation and the resulting management advice within the assessment 
framework and provide an objective approach for addressing data conflict when there are 
multiple conflicting indices of abundance in the same stock assessment model. 

We chose two sharks (sandbar shark and Atlantic sharpnose shark) as representative large 
and small coastal shark species, respectively, in our study. Each species was chosen based on 
availability of recent stock assessments. Each stock was simulated using an age-structured 
model, including generation of conflicting indices of abundance (Peterson et al., 2021). 
Conflicting indices were input into a stock assessment model (‘CI assessment’) and results were 
compared to those generated from inputting a reconciled DFA trend into an equivalent stock 
assessment model (‘DFA assessment’). 



  
Methods 
We evaluated stock assessment performance when including multiple conflicting survey indices 
(CI assessment) compared to a dimension-reduced DFA trend (DFA assessment) as the relative 
abundance information for the Atlantic sharpnose shark and the sandbar shark (Figure 1). 
Simulation sensitivities included (1) changes in the underlying temporal pattern of population 
abundance, (2) generation of conflicting survey indices through time-varying catchability, and 
(3) missing years of survey information. Unaccounted-for shifts in catchability (q) were induced 
to generate conflicting indices of abundance following Peterson et al. (2021; Figure 1).  

Two age-structured operating models (OMs) were constructed with characteristics unique 
to each species. Corresponding estimating models (EMs) were developed using Stock Synthesis 
(version 3.24; adapted from SEDAR 54, SEDAR, 2017), an integrated stock assessment 
modeling framework. The simulated conflicting survey indices were input into the EMs as the 
relative abundance indicators for the CI assessment, while the DFA trend was input into the EMs 
for the DFA assessment.   

  
Study species 
Atlantic sharpnose sharks, though historically assessed as a single stock off the US Atlantic coast 
and in the Gulf of Mexico (SEDAR, 2013), have recently been found to exhibit stock structure 
between the two areas (Davis et al., 2019). The Atlantic stock was simulated in the current study. 
In the US Atlantic, female Atlantic sharpnose sharks have a median age at maturity of 1.6 years 
(Loefer and Sedberry, 2003), maximum longevity of 23 years (Frazier et al., 2014), an annual 
reproductive cycle, and an average litter size of 4–5 pups (Castro, 2009). Atlantic sharpnose 
sharks are moderately productive, with steepness values estimated at 0.56 (SEDAR, 2013). 
Because SEDAR 34 (SEDAR, 2013) assessed the stock using a single-sex, state-space, age-
structured production model, we only had sufficiently available data to generate a single-sex 
simulation in our study.  

Sandbar sharks comprise a single genetic stock in the US Atlantic and Gulf of Mexico 
(Heist et al., 1995) and were most recently assessed using Stock Synthesis (SEDAR, 2017). 
Female sandbar sharks have a median age at maturity of 14 years (Baremore and Hale, 2012), 
estimated longevity of 31 years (SEDAR, 2017), a biennial or triennial reproductive cycle 
(which is, therefore, modeled as 2.5 years; Baremore and Hale, 2012; SEDAR, 2017), and an 
average litter size of eight pups (Baremore and Hale, 2012). Sandbar sharks have particularly 
low productivity, with steepness estimated at 0.3 (SEDAR, 2017). Since SEDAR 54 (SEDAR, 
2017) employed a two-sex assessment model, we had sufficient information available to build a 
two-sex sandbar shark simulation in our study.  

 
Operating model 
The operating model (OM) was based on an age-structured model (see Table 1 for OM equations 
and Tables S1–S4 in the Supplementary material for simulated parameter values), with a low-
fecundity stock–recruitment relationship (LFSR; Taylor et al., 2013). The Atlantic sharpnose 
shark OM had one fishing fleet and either three or four surveys, while the sandbar shark OM had 
four fishing fleets and seven surveys. Modeled fishery and survey selectivities were based on 
those estimated in recent assessments (Figure 2; SEDAR, 2013; SEDAR, 2017). We assumed no 
discarding and no spatial structure for either species. These decisions were made to mirror the 



limited data availability and the resulting lack of spatial structure within models to assess these 
species in practice.   

Numbers of fish of sex s at age a in each year y (Ns,a,y) was a function of those that 
survived from the previous age and year, removing those that died from sex- and age-specific 
annual total mortality (Zs,a,y; Table 1, equation 1). Recruits were defined as those individuals that 
survived their first year of life, where β, Zmin, and Z0 are parameters of the LFSR function (Taylor 
et al., 2013). The spawning output, measured in number of neonates birthed each year (Npupsy), 
was the product of the number of females-at-age in a given year (Ns=female,a,y) divided by 
reproductive periodicity for that species (RP; equation 2), female maturity-at-age (ps=female,a), and 
fecundity-at-age (fa) summed over ages. We assumed a 1:1 sex ratio at birth. Sex- and fleet- 
specific yearly catches-at-age (Cs,a,y,i) were calculated using sex-, age-, year-, and fleet-specific 
fishing mortality (Fs,a,y,i). Total fishing mortality at sex, age, and year (Fs,a,y) was converted to 
fleet-specific  fishing mortality at sex, age, and year by multiplying Fs,a,y by fleet-specific 
selectivity (sela,s,i) and the proportion of fishing mortality attributed to fleet i (δi; equation 3). 
Total mortality for each sex, age, and year (Zs,a,y) was calculated by summing Fs,a,y,i across fleets 
and adding natural mortality-at-sex and -age (equation 4). Indices of abundance indexed by sex, 
age, year, and survey j (Is,a,y,j) were generated by multiplying Ns,a,y by the survey-specific annual 
catchability (qy,j) and vulnerability (i.e. gear selectivity) for each sex, age, and survey (vs,a,j) 
adjusted by lognormal error (εs,a,y,j), where σs,a,y,j is the lognormal standard deviation of the yearly 
sex- and age-structured index for each survey j. Note that we implemented survey variability by 
defining survey-specific coefficients of variation (CVj). Thus, we multiplied the CVj by the 
expected value of the survey index (following 𝐶𝐶𝐶𝐶 × 𝜇𝜇 = 𝜎𝜎) to generate σs,a,y,j (equation 5), which 
was consequently indexed by sex, age, year, and fleet. Yearly survey-specific indices (Iy,j) were 
calculated by summing Is,a,y,j across age and sex (equation 5). Lastly, we assumed that ageing 
was not conducted each year to mirror the limited data availability for these species in practice. 
Ages generated from fishery-dependent and fishery-independent sources were converted to 
lengths for each individual, n, using the von Bertalanffy growth equation (equation 6). Ages 
were jittered by 20% as an additional source of observation uncertainty. The number of length 
composition observations taken varied based on the survey and species; more length 
observations were taken for the Atlantic sharpnose shark (~90–145 observations year–1) 
compared to the sandbar shark (~1–50 observations year–1). Theoretical age at length 0, t0, was 
assumed to be constant, and asymptotic maximum length, L∞, and the growth coefficient, K, 
were implemented stochastically for each individual and with correlation of ρ = –0.9 (Bertsekas 
and Tsitsiklis, 2002).  
 The operating model for each species used estimated parameters from the most recent 
assessments (SEDAR, 2013; SEDAR, 2017) where applicable (Tables S1–S4 in the 
Supplementary material). Operating model simulations were conducted in the programming 
language R (version 3.6.2; R Core Team, 2019). Representative R code is available via 
https://github.com/cassidydpeterson/DFA_Simulation_and_Assessment.   
 
Dynamic factor analysis 
Survey indices generated in the OMs were inputted into a dynamic factor analysis (DFA) model 
(Figure 1). Dynamic factor analysis is a multivariate, dimension-reduction, state-space approach 
designed for nonstationary time-series (Zuur et al., 2003a; Holmes et al., 2014). The form of the 
DFA model follows equation 7 in Table 1, where yt is a vector of n log-transformed then 
standardized time-series at each time t, αt is a vector of m common trends (m < n) with associated 
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error (ηt), Γ is an n×m matrix containing factor loadings, which indicate the influence of the 
common trend on each input time-series, and εt and ηt represent observation and process error 
terms, assuming a multivariate normal distribution with mean 0 and covariance matrices H and 
Q, respectively. Q was set equal to the identity matrix (Zuur et al., 2003a, 2003b; Holmes et al., 
2014). Survey uncertainty was propagated through DFA analyses by setting average survey CV 
as the diagonal elements of the H matrix (variance) with no covariance between surveys. Survey 
indices with lower CVs were generally weighted more heavily within the DFA, as denoted by 
larger factor loadings (Peterson et al., 2021). 

We assumed m = 1 to only generate a single DFA trend, and we excluded explanatory 
variables. DFA modeling assumptions include normality, independent error, and homogeneity of 
residuals (Zuur et al., 2003a). We applied an alternative rescaling approach to the log-
transformed indices (comparable to z-scoring) prior to running the DFA, which allowed for 
backtransformation of the resulting DFA trend out of log-space (see Supplementary material; 
Peterson et al., 2021). Models were fitted using the state-space multivariate autoregressive 
modeling package ‘MARSS’ in R (Holmes et al., 2014).  

 
Simulation scenarios 
We explored the results of assessments conducted using multiple indices of abundance as survey 
index inputs compared to those generated using a single, DFA-predicted trend as a survey index 
input across various scenarios. The scenarios were intended to approximate various realistic 
conditions that may violate assumptions of index of abundance generation to explore how the 
resulting assessments perform under each different trial. Simulation scenarios explored in the 
current study were the same as those explored in Peterson et al. (2021; Tables 2–3).  

In the Atlantic sharpnose shark simulation, we explored DFA performance across: (1) 
underlying population abundance patterns by varying fishing mortality, and (2) inducing survey 
indices to conflict by shifting catchability (both as a knife-edged shift or a gradual shift). We also 
explored the effects of survey variability by altering survey-specific CVs and adding a partial, 
fourth survey index (see Supplementary material). In the sandbar shark simulation, we explored 
DFA performance across: (1) conflicting survey indices as generated by implementing changes 
in patterns of catchability over time, and (2) missing years of survey data vs. full survey data.  

Each simulation scenario was replicated 100 times. Simulations spanned 65 or 90 years, 
with survey data collected beginning after 40 or 51 years in 1993 and 1979 for Atlantic 
sharpnose and sandbar sharks, respectively (Tables 2–3; Figure 3), to mirror realistic data 
availability.  For Atlantic sharpnose shark, the knife-edged shift in catchability began in 2003, 
and the gradual change followed a linear ramp from 2003 to 2013 or 2018, with catchability 
shifting from 0.00025–0.001 (q1) or 0.003–0.004 (q3). For the sandbar shark, catchability 
increased or decreased to/from 0.01 to 0.045 in a linear or stepwise pattern over years 1979 to 
2018 (Figure 3). 

  
Estimating model 
We generated two EMs for each simulation scenario: (1) a conflicting index (CI) EM in which 
multiple simulated survey indices were included, and (2) a DFA EM in which a single DFA-
predicted trend was input in the EM as the measure of relative abundance. All equations used in 
the Stock Synthesis assessment platform can be found in Methot and Wetzel (2013). Stock 
Synthesis is an integrated analysis framework which can incorporate several sources of data, 
accommodate complex model configurations, scale between data-limited and data-rich 



assessments, and propagate uncertainty (Methot and Wetzel, 2013). Stock Synthesis is a flexible 
modeling platform that has been shown, under simplifying assumptions, to provide useful 
management advice in data-limited situations (Wetzel and Punt, 2011; Cope, 2013). Analyses 
were conducted in R (version 3.6.2; R Core Team, 2019) and Stock Synthesis (Methot and 
Wetzel, 2013), using the R package r4ss (Taylor et al., 2019, 2021) for communication between 
Stock Synthesis and R.  
 
Estimating model assumptions 
Following each simulation, the Atlantic sharpnose shark stock was assessed through a female-
only model, and the sandbar shark stock was assessed with a two-sex model, each with one area 
and no discards. Surveys were assumed to take place in the middle of the year, and catches-at-
age were inferred from the fishery length composition data. Maximum age was assumed to be 27 
years (Frazier et al., 2014) and 31 years for the Atlantic sharpnose and sandbar shark, 
respectively, and a plus group was implemented for ages greater than or equal to 18 years in the 
Atlantic sharpnose shark model. Based on the length of simulated survey indices, the starting 
year of each iteration was chosen as 1993 for the Atlantic sharpnose shark and 1979 for the 
sandbar shark, resulting in an end year of 2018 for each species. 
 
Estimating model data 
Age- and sex-specific instantaneous natural mortality was fixed except for pre-recruits (age 0) 
which was defined by the LFSR function. Fecundity was implemented through a time-invariant 
fecundity-at-age vector. The first mature age was assumed to be two years for Atlantic sharpnose 
sharks and 13 years for sandbar sharks. Von Bertalanffy growth was implemented following 
Schnute's (1981) three-parameter reparameterization (Methot and Wetzel, 2013). Growth 
parameters were independently calculated and fixed within the EM model. Weight-at-length was 
assumed to follow the allometric growth equation, where parameters were fixed based on values 
independently estimated in SEDAR (2013, 2017). Following SEDAR 54 (SEDAR, 2017), all life 
history parameters were fixed at their simulated values in the EM for both species.    

All data included in the stock assessment model were generated from the OM. The index 
of abundance error was assumed to follow a Student’s t-distribution in log space with 30° of 
freedom, which approximates a lognormal distribution (Methot, 2013). Indices of abundance 
were rescaled prior to DFA model fitting, as presented in Peterson et al. (2021; see 
Supplementary material), and the resulting backtransformed DFA trend was in arithmetic space 
with lognormal error. The backtransformed DFA trend was input into the EM with associated 
lognormal error.   

For the DFA EMs, the resulting DFA trend was, by definition, representative of all length 
observations from each underpinning survey. Therefore, we combined length observations from 
each survey by taking a weighted average, where length observations (number of fish observed 
in each length bin in each survey per year) were weighted by relative size of the corresponding 
factor loading (Γj ÷ max(Γ) ∀ j; see Supplementary material for additional details on treatment of 
composition data). Recall that factor loadings are elements of the Γ matrix and indicate the 
relative strength of the effect of the resulting DFA index on each survey. We assumed that if the 
DFA index was not heavily influenced by a survey, then the length observations of that survey 
should have less weight in the stock assessment. Age compositions were not included in the 
EMs.  

 



Estimating model stock–recruit relationship 
The survival-based stock–recruitment function (LFSR; Taylor et al., 2013) was implemented 
within the EMs, which requires specification of three parameters: ln(R0), β, and sfrac. ln(R0) is the 
natural logarithm of virgin recruitment (where recruits were defined as age 0) and was estimated 
with no prior. The parameter β controls the shape of the density-dependent survival curve of 
prerecruited pups, and sfrac defines the fraction of pup survival when the population approaches 
zero. Both β and sfrac were fixed due to estimation concerns associated with assessing a ‘one-way 
trip’ (Hilborn and Walters, 1992). The standard deviation of recruitment (σR) was fixed at 0.5. 
Adjustments for recruitment variability bias were made following Methot and Taylor (2011). We 
assumed no environmental link or autocorrelation in recruitment. 
 
Estimating model selectivity 
Following the age-structured simulation models, we assumed that fishery and survey selectivities 
were age-structured. Simulated selectivity curves were based on observed fisheries and surveys 
for each species. All selectivity parameters were estimated using normal priors. EM selectivity 
curves closely approximated simulated selectivity-at-age (Figure 2).   

In the Atlantic sharpnose shark EM, the fishing fleet was dome-shaped and modeled 
using a double normal selectivity function. In the CI EM, each survey was assumed to follow 
logistic selectivity corresponding to the OM simulations. In the DFA EM, the DFA-predicted 
index was assumed to follow a logistic selectivity function with time-blocks when survey indices 
contained missing data (Table S5 in the Supplementary material). All selectivity parameters were 
estimated with informative priors in the Atlantic sharpnose shark EM.  
 In the sandbar shark EM, fishing fleets were assumed to follow dome-shaped, double 
normal selectivity (fleets 1 and 3) or logistic selectivity (fleets 2 and 4). When age-specific 
selectivity varied by sex (fleets 1 and 3), a male offset was implemented to account for sex-
specific differences in selectivity. In the CI EM, dome-shaped, double normal selectivities with 
sex-specific offsets were implemented for all surveys, with the exception of one (survey 2) 
which assumed logistic selectivity with no male offset (see Table S5 in the Supplementary 
material for more information on how selectivity was specified in the EM). In the DFA EM, 
where the DFA-predicted index was implemented, selectivity-at-age was estimated as a random 
walk (Figure 4). Random walk selectivity curves were not sex-specific.  

When DFA was fitted to surveys with missing years of data (Atlantic sharpnose scenarios 
with four surveys; sandbar missing data scenarios), time-blocks were implemented to account for 
changes in selectivity when not all surveys were conducted (Table S5 in the Supplementary 
material). For example, if three surveys A, B, C were conducted, and survey A ran from years 1 
to 10, survey B ran from years 4 to 8, and survey C ran from years 6 to 10, four time-blocks 
would be created: time-block 1 for years 1–3 where only survey A was run, time-block 2 for 
years 4–5 when surveys A and B were run, time-block 3 for years 6–8 when surveys A, B, and C 
were run, and time-block 4 from years 9–10 when surveys A and C were run. This way, there 
was a unique selectivity pattern for each combination of surveys. An age-based, random walk 
selectivity function was used to approximate the resulting selectivity curve. Starting values for 
each time-block represented an average of the selectivities for each survey that were fitted using 
Stock Synthesis selectivity helper excel spreadsheets (available via 
https://vlab.ncep.noaa.gov/web/stock-synthesis/document-library, accessed June 2020). The 
parameters of the resulting random walk selectivity function were used as the initial values for 
selectivity within the EM.   

https://vlab.ncep.noaa.gov/web/stock-synthesis/document-library


 
Estimating model post-run data weighting 
We chose to implement the Francis (2011) weighting technique for length composition data. 
Essentially, after the EMs were run, input sample sizes of length composition observations were 
iteratively “right-weighted” to account for the correlated length observations obtained from 
catches and survey observations by reducing the observed sample size of length observations to 
the effective sample size. The effect of right-weighting length composition data consequently 
gives greater weight to indices of abundance (Courtney et al., 2017a; Francis, 2017). No 
additional variance was added to the survey index variances.  
 
Estimating model convergence 
We could not perform a full set of diagnostic procedures  (e.g. Carvalho et al., 2021) for the EMs 
fitted to each iteration of every OM simulation scenario because of the large number of model 
runs. Consequently, a limited number of model-fit diagnostics commonly applied in data-
moderate, age-structured stock assessments for sharks (e.g. Courtney, 2016; Courtney et al., 
2017b) were evaluated here for the first iteration of each EM fitted to an OM scenario. These 
included a visual comparison of the predicted vs. simulated stock abundance, predicted vs. 
observed indices of abundance, annual length composition, and the aggregated annual length 
composition by fleet (Figures 5–6). These also included visual inspections of predicted 
recruitment relative to the assumed stock–recruitment relationship, as well as the residuals from 
the predicted vs. observed indices of abundance, annual length compositions, and estimated 
annual recruitment deviations for unexpected patterns or trends. Model-fit diagnostics for 
subsequent iterations were assumed to follow those of the first iteration. In contrast, diagnostics 
for the remaining iterations included visual comparison of the EM predicted vs. the OM 
simulated abundance (in numbers). EM fits that did not pass these model-convergence 
diagnostics or that failed to converge were rerun with alternate starting values or were excluded 
from subsequent analyses if they failed the convergence diagnostics over multiple iterations.  
 
Estimating model performance 
Assessment performance was inferred from accuracy of estimated fishery parameters relevant for 
management purposes, namely depletion (current stock size / virgin stock size in numbers) and 
fishing mortality in the final year of the simulation (or final year of fishing if fishing mortality 
was set at zero in the final years of the simulation; Ffinal) following Courtney et al. (2016). 
Estimated quantities are presented as relative values (i.e. estimated value / simulated value). See 
Supplementary materials for estimated virgin abundance (N0 in numbers), root-mean square error 
(RMSE) in estimated abundance in numbers, and relevant maximum sustainable yield-based 
reference points.  
 
Results 
In Peterson et al. (2021), we described the performance of the DFA model across simulation 
scenarios; in the current study, we describe the performance of the assessment models when 
DFA-predicted indices are implemented in a stock assessment (DFA assessment) compared to 
the standard practice of including multiple survey-based indices of abundance (CI assessment). 
We evaluated CI vs. DFA assessment performance for the Atlantic sharpnose shark and the 
sandbar shark across (1) changes in the underlying temporal pattern of population abundance, (2) 
generation of conflicting survey indices through time-varying catchability, and (3) missing years 



of survey information. (See Supplementary materials for details on how CI and DFA assessments 
performed across survey variability, number of surveys, and with respect to management 
reference points.) Recall that assessment model performance was measured by the accuracy of 
estimated parameters.   
 
Model fitting 
When simulations were run with no error, the EMs were generally capable of accurately 
replicating the OM dynamics. All Atlantic sharpnose shark EMs converged, and fewer CI 
assessments converged (94.8%) than DFA assessments (99.9%) in sandbar shark EMs.  
 
Underlying pattern in population abundance 
Under the ‘no change in underlying population abundance over time’ (ConstF) Atlantic 
sharpnose shark scenario, assessment model performance was generally poor when surveys 
experienced time-varying catchability (Figures 7–8). The CI assessment was generally more 
accurately and precisely capable of estimating relative depletion and terminal fishing mortality 
than the DFA assessment when surveys experienced unaccounted-for time-varying catchability.   

When the underlying population decreased in a one-way trip (Inc F), the CI assessment 
more accurately estimated relative depletion and Ffinal for constant and knife-edge catchability 
patterns, but not when catchability underwent a gradual shift (Figures 7–8). When the population 
increased in a one-way trip (Dec F), the DFA and CI assessment results were similar, though the 
DFA assessment more consistently and accurately estimated depletion and Ffinal, especially when 
four surveys were used (Figures 7–8).  

The outcome for the fishing mortality scenario that resulted in a population that 
underwent a decrease then increase in size (U F) seemed to indicate that both the CI and DFA 
assessment models performed fairly well and neither assessment performed better in all scenarios 
(Figures 7–8 and Figures S2–S5 in the Supplementary material). In almost all scenarios in which 
time-varying catchability was simulated along with a U-shaped fishing mortality pattern, the 
DFA assessment results were more precise than those from the corresponding CI assessment (as 
denoted by shorter violins), except in the scenarios in which the surveys underwent a knife-
edged increase in catchability (e.g. UF-k2; Figures 7–8 and Figures S2–S5 in the Supplementary 
material). 

When an incomplete fourth survey was added in the Atlantic sharpnose shark simulation, 
both CI and DFA assessment performance improved. This was likely due to the fourth survey 
having constant catchability, thereby providing more support of the true underlying abundance 
pattern. Further, to account for missing data, selectivity was estimated with two time-blocks, 
which likely increased the flexibility in the DFA assessment and improved DFA assessment 
performance. 

 
Presence of conflicting survey indices 
Atlantic sharpnose shark 
In the case of conflicting survey indices, CI and DFA assessments generally maintained similar 
performance than in scenarios where catchability was constant for all survey indices (Figures 7–
8). Notable exceptions were when underlying population abundance was constant (ConstF), and 
when the survey with the smallest CV underwent a shift in abundance that was in the opposite 
direction of the stock abundance trend (i.e. increasing catchability when stock size was 
decreasing; IncF_k2, IncF_g2, ConstF_k2, constF_g2). Across combinations of shifts in 



catchability and survey-specific variability, CI assessment parameter estimates were generally 
more variable (longer violins), while DFA assessment parameter estimates were more consistent 
across scenarios (shorter violins; Figures 7–8 and Figures S2–S5 in the Supplementary material). 
 
Sandbar shark 
The sandbar shark simulation more thoroughly examined the effects of including conflicting 
survey indices within a stock assessment model by examining the number of surveys that were in 
conflict with the predominant trend (zero – three out of seven) and the directionality of the 
pattern of changing catchability (up, down). The DFA assessment generally performed more 
accurately across most scenarios than the CI assessment (Figures 9–10 and Figures S6–S9 in the 
Supplementary material). As in the Atlantic sharpnose shark simulation, DFA assessment 
estimates were more precise than CI assessment estimates across simulations in which survey 
catchability varied over time. However, the DFA assessment results for the sandbar shark were 
more variable under scenarios in which three surveys underwent shifts in catchability (namely 
C3_mix; Figures 9–10). 
 As the number of surveys that underwent shifts in catchability increased, CI and DFA 
assessment performance generally decreased, especially when three out of seven surveys were 
conflicting (Figures 7–8). Both the CI and DFA assessments performed more poorly in scenarios 
in which surveys experienced an increasing catchability pattern (Figures 9–10 and Figures S6–S9 
in the Supplementary material). Note that an increasing shift in catchability is acting in the 
opposite direction of the predominant trend in the population (decreasing). Similarly, the DFA 
assessment experienced more variability across scenarios when three surveys experienced shifts 
in catchability and at least two of those surveys experienced increasing shifts in catchability 
(Figures 9–10 and Figures S6–S9 in the Supplementary material). This follows from Peterson et 
al. (2021), where DFA performance was poorer when shifts in catchability were in the opposite 
direction of the underlying population trend.   
 
Missing data 
The CI and DFA assessments fairly closely estimated depletion (Figure 9) and Ffinal (Figure 10) 
in all scenarios. Assessment performance with missing data was similar to assessment 
performance for complete data in both the CI and DFA assessments when zero, one, or two 
surveys underwent shifts in catchability. When three surveys were in conflict, assessment 
performance declined in both CI and DFA assessments when data were complete (Figures 9–10). 
Both CI and DFA assessments more accurately estimated parameters of interest in the missing 
data scenarios than did their complete data counterparts, indicating that the missing data may 
have allowed the model to rely less on relative abundance information and more on other pieces 
of information in those years. Length compositions were weighted differently in the CI and DFA 
assessments, and missing data DFA model runs also include time-blocks in selectivity, while the 
complete data DFA model runs do not, which may contribute to the differing results.  

Interestingly, despite poorer DFA performance in missing data scenarios than in the 
complete data scenarios (Peterson et al., 2021), when three surveys were conflicting, DFA 
assessments with missing data more accurately estimated relative depletion and Ffinal than did the 
respective scenarios wherein data were complete (Figures 9–10 and Figures S6–S9 in the 
Supplementary material). Additionally, DFA assessments estimated depletion (and to a lesser 
extent Ffinal) better than CI assessments when zero, one, or two surveys underwent shifts in 
catchability for both complete and missing data (Figures 9–10). This is likely due to the 



selectivity time-blocks implemented in the ‘missing data’ DFA assessment and larger uncertainty 
around the DFA trend, which allowed the assessment model to more heavily rely on other 
information within the model to produce a more realistic estimate of depletion and Ffinal.  

 
Discussion  
Main findings 
Performance of CI and DFA assessments depended on underlying abundance scenarios, the 
direction and magnitude of changes in catchability combined with the survey variability, the 
number of surveys that conflicted, and whether the survey indices contained missing years of 
data. Comparable to findings by Wilberg and Bence (2006), failing to account for changes in 
survey catchability in the EM when they occurred in the OM resulted in biased parameter 
estimates in the CI and DFA assessments (i.e. interquartile range of relative parameter estimate 
did not include 1). In scenarios where survey catchability increased over time, relative depletion 
estimated from CI assessments was generally biased high, a result also found in Wilberg and 
Bence (2006). When the underlying population abundance was constant (Atlantic sharpnose 
shark ConstF), neither CI nor DFA assessments performed well when catchability was time-
varying. Statistical models are known to struggle to fit data that do not exhibit sufficient contrast 
(Hilborn and Walters, 1992). 

Despite these effects on DFA assessment performance, under scenarios in which DFA 
accurately predicted the underlying trend in the population (Peterson et al., 2021), DFA 
assessment performance was comparable to CI assessment performance overall. Dynamic factor 
analysis performs poorly when the underlying population is constant and multiple surveys 
undergo shifts in catchability (Peterson et al., 2021), and, consequently, the DFA assessment 
performance was also poor in these circumstances. Further, we note that by critically analyzing 
DFA results prior to including them in an assessment (e.g. whether the DFA trend is entirely 
inconsistent with remaining available data, including catches, length compositions, and life 
history strategy), many unreasonable and outlying assessment results may be avoided in practice. 
In this way, assessments may benefit from using DFA as a diagnostic technique when multiple 
conflicting indices are present, as DFA proved useful in elucidating underlying abundance trends 
from a collection of disagreeing survey indices (Peterson et al., 2021). 

We applied DFA across surveys with various selectivities, an approach which has 
generally been discouraged (consider discussion within Conn, 2010a). However, the consistency 
between CI and DFA assessment results lends support for our approach to building the DFA 
assessment. Through DFA rescaling, we were able to backtransform the resulting DFA trend out 
from ‘log-space’ and preserve the lognormal error structure of the survey indices. We modeled 
selectivity by implementing a random-walk selectivity curve to approximate the average 
selectivity of each survey, including time-blocks to account for years with missing data, and we 
used factor loadings to weight mean length compositions within the DFA assessments. Any 
lingering concerns of combining indices with variable selectivity patterns could be alleviated by 
applying DFA to recruitment indices, for which length composition data are not required. 
Further, the DFA assessments may have an advantage over the CI approach by allowing the 
index selectivity to be estimated using a random walk. Modeling selectivity with a more flexible 
curve may have improved CI assessment results; however, there were insufficient length 
composition observations to model each fleet’s selectivity using a random walk.  

Ultimately, while there does not appear to be overwhelmingly clear evidence that using 
DFA to reconcile multiple survey indices of abundance prior to a stock assessment vastly 



improves relevant parameter estimates in all simulated cases, DFA produced comparable or 
improved estimates in many scenarios and may serve additional purposes within a stock 
assessment. This approach of reconciling indices of abundance prior to an assessment model 
eliminates the potential of multiple, incongruous states of nature implied by making assumptions 
about the indices of abundance (as in the sandbar shark assessment in which all indices were 
included in the model as a base case, while increasing indices and decreasing indices were 
included as unique sensitivity runs, each suggesting a different stock status; SEDAR, 2017). 
Simplification of the input abundance indices to a single, stock-wide index may be considered a 
simpler assessment model which, when producing the same result as a more complex model, 
could be deemed preferable (Adkison, 2009).  

Estimated parameters from DFA assessments were more consistently (precisely) 
estimated across variable simulation scenarios than those estimated from CI assessments. The 
DFA trend also has reduced interannual variability compared to the very large levels in 
corresponding individual indices, which are often incompatible with the slow life history of 
sharks in general and violate the assumption that the indices are proportional to population 
abundance (Cortés et al., 2015). Accordingly, DFA assessment results were largely buffered 
against biases introduced in estimated depletion and fishing mortality in the final year of fishing 
from time-varying catchability that were evident in the CI assessment results; though, this buffer 
did not hold when three surveys underwent time-varying catchability in the complete data 
sandbar shark simulation scenarios. For example, in many sandbar shark scenarios, the CI 
assessment predicted an increase in stock abundance at the end of the simulation, likely due to 
conflicting indices providing evidence that the stock was increasing in abundance. This predicted 
increase led to overestimated relative depletion by the CI assessments. These observations were 
slightly exacerbated in the complete data scenario, likely because the complete indices displayed 
a more complete and drastic contradiction to the underlying abundance when catchability was 
increasing or decreasing over time. The DFA reconciled these contrasting indices prior to the 
assessment, preventing discordant indices from impacting the DFA assessment to the same 
extent as in the CI assessments.      

We also note that there were several scenarios in which DFA assessment estimates were 
more accurate than corresponding CI assessment estimates. Simply, when DFA ‘works’ for 
reconciling conflicting survey indices (assuming sufficient contrast in the stock abundance, 
where most survey indices are informative; see Peterson et al., 2021), using DFA results in an 
assessment generally ‘works.’ There are scenarios, however, in which DFA may be an 
inappropriate treatment of the data. Particularly, where data-limitation is not a concern, alternate 
spatio-temporal approaches (e.g. Thorson et al., 2015) may offer a more appropriate and 
informative treatment of the data. Further, when all surveys underwent shifts in catchability such 
that no index was representative of abundance, DFA was generally unable to recover the latent 
trend in stock abundance (Peterson et al., 2021). Ultimately, DFA results should be realistic and 
consistent with other information related to the stock (Peterson et al., 2021). Nevertheless, in the 
proper context, as guided by our simulation (appropriately applying DFA with our rescaling 
approach), while accounting for survey selectivity and length frequency observations, survey 
reconciliation approaches may serve as a valuable tool in fishery population dynamics analyses.  

We also recognize the added potential value that DFA can serve within the stock 
assessment and management framework, apart from its use in generating a single index of 
abundance. DFA could be used as a valuable model simplification diagnostic tool in situations in 
which multiple conflicting indices induce confusion regarding the state of the system. Given the 



demand for standardized diagnostics in integrated, age-structured stock assessment models, in 
addition to hierarchical cluster analysis (e.g. Courtney, 2017) or where hierarchical clustering 
breaks down, DFA could be useful in reducing the number of model runs required to evaluate 
model sensitivity to conflicting indices of abundance. Factor loadings (Γi) represent a way to 
separate input survey indices into agreeing and disagreeing groups (Zuur et al., 2007). An 
assessment may inherently benefit from a clearer understanding of the abundance pattern of the 
resource, a priori. Further, many index-based assessment and management procedure approaches 
are utilized in data-limited fisheries or to provide interim advice between full stock assessment 
years (Geromont and Butterworth, 2015; Huynh et al., 2020). In these circumstances, it seems 
natural that use of a stock-wide DFA trend may be preferable to a geographically isolated index 
of abundance. We encourage future exploration of these concepts. Underlying population 
structure, missing data, and the interaction between conflicting surveys with decreased 
variability had the greatest effect on DFA assessment performance relative to CI assessment 
performance. Estimated quantities from DFA assessments appeared to be more precise than CI 
assessment results across variations in survey catchability. However, the precision of DFA 
assessment estimates tended to degrade as more surveys experienced trends in catchability (in 
the sandbar shark simulation). In scenarios where the underlying abundance provided good 
contrast (e.g. Atlantic sharpnose – UF and sandbar shark scenarios), DFA assessments generally 
produced better estimates of key stock status parameters. Assessment estimates were generally 
better in missing data scenarios (e.g. Atlantic sharpnose four surveys and sandbar shark missing 
data) in both CI and DFA assessments. DFA frequently outperformed CI assessments where 
missing data were present, and DFA assessments generally produced more accurate parameter 
estimates when data were complete. Nevertheless, there were scenarios in which CI assessments 
performed better (e.g. where surveys with the lowest CV underwent shifts in catchability in the 
opposite direction as the underlying trend in abundance; see SB29 and SB38 results in Figures 
S6–S9 in the Supplementary material).  

 
General comments 
A pillar of integrated analysis is the notion that data should be manipulated or treated as little as 
possible prior to inclusion into an assessment (Maunder and Punt, 2013; Methot and Wetzel, 
2013). Utilization of raw data in integrated analysis aims to reduce loss of information, increase 
intuition and understandability with respect to diagnostics and likelihood functions, ensure 
logical consistencies, and most importantly, ensure uncertainty propagation and treatment 
(Maunder and Punt, 2013). Further, concerns regarding using an index reconciliation approach 
prior to an assessment model include correcting for variable survey catchabilities (Conn, 2010a; 
which also applies to individual indices), appropriate estimation of the selectivity curve 
(Azevedo et al., 2008; Conn, 2010a), and propagation of uncertainty (Maunder and Punt, 2013). 

Then, why consider an approach that only increases pre-assessment data manipulation? 
We would argue that while it has generally been shown that manipulating data prior to input into 
stock assessments is not advisable, we need to be aware of the broader principles underpinning 
stock assessments and be mindful of the specific purpose that each data component is intended to 
achieve. At the core of an assessment, survey indices are intended to provide baseline trends in 
relative abundance, catches are used to provide the scale of abundance, life history information 
(i.e. reproductive rates, stock–recruit relationship, growth rates, natural mortality) provides the 
degree of vulnerability of the stock, and age, or more commonly, length frequencies, are used to 



partition total abundance, as well as catch composition, into their representative size or age 
structure.  

If we have spatially fragmented and highly uncertain survey indices that are no longer 
representative of the overall underlying trend in the resource, these indices are no longer serving 
their purpose within a stock assessment. By synthesizing these data prior to inclusion into an 
assessment, we are not carelessly undermining the integrated analysis framework, but rather, we 
are mindfully considering that, in certain instances, multiple conflicting indices may be an 
inappropriate representation of our stock. Data that are not representative of the resource should 
not be included in an assessment, but when given two opposing indices of abundance, it is 
generally not clear which (if either) index is a suitable representation of the underlying stock 
dynamics. Tools such as DFA can provide clarity in deciphering which survey indices may be 
relevant indicators of stock abundance via analysis of factor loadings.  

In our analyses, we were able to address the issues identified above and partially alleviate 
some concerns regarding our additional pre-treatment of survey data. Through the process of 
rescaling survey indices (the relatively complex process of Z-scoring indices prior to fitting the 
DFA model), we corrected for the variable catchabilities across surveys. As catchability is 
simply a multiplicative constant, we removed the effect of multiplying constants of various 
magnitudes to each survey through standardization. This approach would not work for an index 
of abundance for which catchability is known to change over time; in those instances, attempts 
should be made to accommodate changes in catchability within survey index standardization 
approaches (e.g. Hinton and Maunder, 2003; Maunder and Punt, 2004) or within the stock 
assessment model (Wilberg et al., 2010), if possible. However, our results demonstrate that even 
when catchability is unknown and changing in a distinct pattern over time, DFA can provide 
realistic and relevant results.  

We allowed the sandbar shark assessment model to internally estimate an age-based, 
random-walk selectivity function based on weighted length data, permitting the selectivity curve 
to follow unconventional forms. Length compositions from each survey were weighted by the 
relative magnitude of the corresponding factor loading. Effectively, this assumes that length 
observations from a survey that more strongly explained the resulting DFA trend are more 
informative, and surveys that did not contribute to the DFA trend were not used to estimate DFA 
trend selectivity. Hence, we accounted for the variable gear selectivities that are combined to 
produce the DFA-predicted trend.  

As a state-space process, DFA is capable of estimating both observation and process 
errors, which represents a mechanism for uncertainty propagation. In our approach, we can 
specify known uncertainty attributed to each survey index into the DFA model as the known 
observation error and estimate a single trend that includes known observation error and estimated 
process error. Resulting standard errors of the DFA trend reflect this additional uncertainty. We 
can also allow the DFA model to internally estimate observation error and/or select from 
multiple different structural variance-covariance forms (Holmes et al., 2014).  

It is also worth noting that many integrated assessment approaches, including Stock 
Synthesis, require relative abundance information to be input into the model in an already 
modified form. Rather than raw cpue data, Stock Synthesis requires relative abundance 
information be input into the assessment model as an index, which requires manipulation of raw 
catch data (Maunder and Punt, 2013). We address many concerns related to data reconciliation 
prior to an assessment model and ultimately argue that supplying meaningful trends in relative 
abundance to an assessment is more important than keeping input data in raw form.  



Generating a single trend in stock abundance also provides further clarity on the status of 
the resource, which will prove useful both within and outside the context of a stock assessment 
(Peterson et al., 2021). Disagreeing survey indices usually violate fishery-independent sampling 
assumptions, resulting in temporal trends that are not always representative of the abundance of 
the stock (Maunder et al., 2006; Wilberg et al., 2010; Maunder and Piner, 2017). By integrating 
spatiotemporally incomplete survey indices prior to an assessment, we obtain a stock-wide trend 
in abundance, which fulfills the goals of a proper survey and more consistently aligns with the 
purpose of a stock assessment. Proper interpretation of the trend in the resource prior to a stock 
assessment may also serve to improve stakeholder understanding and facilitate transparency of 
the assessment process. Thus, our prior treatment could be considered a more appropriate 
utilization of data. 

 
Relevance 
The disparate and conflicting nature of the indices of abundance available for coastal and other 
shark assessments is a well-recognized concern and hinders our understanding of the status of 
these stocks (Cortés, 2011; Cortés et al., 2015; Peterson et al., 2017). Research on integrating 
local abundance indices into a global index and identifying indices that contribute the most 
information to stock-wide trends has consistently been requested (ASMFC, 2013; SEDAR, 
2013). Past coastal shark assessments have accordingly experimented with survey index 
reconciliation approaches (Conn, 2010b) in sensitivity runs (SEDAR, 2011).  

The results of our research show that reconciling survey indices using DFA in the context 
of stock assessment is a justifiable exercise to improve understanding of the relative abundance 
of the stock. We present solutions to challenges that may be encountered in such analyses, 
including rescaling DFA results and treatment of selectivity for combined length or age 
compositions. Although we focused on coastal shark species in this simulation exercise, we 
found that this approach was applicable for two species of different life history and data 
availability. As such, we expect that the same protocol will be generalizable to other stocks.  

We further highlight the value that DFA may have within the broader stock assessment 
framework. Consider index-based, data-limited assessment approaches, in which an index of 
abundance is a key input into an empirical assessment approach (e.g. Brooks et al., 2010; An 
Index Method, https://nmfs-fish-tools.github.io/). In these data-limited assessment methods, 
instead of inputting a single index that may be chosen somewhat arbitrarily, a DFA trend could 
be used instead (see Cortés and Brooks, 2018 for a similar application). These arguments extend 
to empirically based management procedures (Geromont et al., 1999; Geromont and 
Butterworth, 2015) or interim assessment approaches (Huynh et al., 2020) used to update Annual 
Catch Limits (ACLs), wherein a stock-wide index compilation may produce more realistic or 
appropriate advice for an entire stock.  

 
Supplementary material 
The following Supplementary material including details of the DFA rescaling approach, 
treatment of length composition for the DFA estimation model, ancillary results, and additional 
tables and figures depicting full results for each simulation scenario is available 
at ICESJMS online.  
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Table 1. List of equations and parameter definitions.  

 

1 𝑅𝑅𝑠𝑠,𝑦𝑦+1 𝑎𝑎 = 𝛼𝛼
−𝑍𝑍𝑠𝑠,𝑎𝑎,𝑦𝑦=  � 𝑁𝑁𝑠𝑠,𝑎𝑎−1,𝑦𝑦e 𝛼𝛼 < 𝑎𝑎 < 𝐴𝐴𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦+1  

−𝑍𝑍𝑠𝑠,𝐴𝐴−1,𝑦𝑦� −𝑍𝑍𝑠𝑠,𝐴𝐴,𝑦𝑦��𝑁𝑁𝑠𝑠,𝐴𝐴−1,𝑦𝑦e  + �𝑁𝑁𝑠𝑠,𝐴𝐴,𝑦𝑦e  𝑎𝑎 = 𝐴𝐴

Age-structured 
numbers at age 

2 𝑅𝑅𝑠𝑠,𝑦𝑦+1 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑦𝑦 × 𝑒𝑒−𝑀𝑀0,𝑦𝑦 
𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑦𝑦𝑀𝑀0,𝑦𝑦~𝑁𝑁 {�1 − � � × (𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑍𝑍0) + 𝑍𝑍0� , 0.1} 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠0

1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑦𝑦 = �𝑁𝑁𝑠𝑠=𝑓𝑓𝑓𝑓𝑚𝑚𝑎𝑎𝑓𝑓𝑓𝑓,𝑎𝑎,𝑦𝑦 × × 𝑁𝑁𝑓𝑓,𝑎𝑎 × 𝑓𝑓𝑎𝑎 𝑅𝑅𝑅𝑅

𝑎𝑎

× 0.01� 𝑁𝑁𝑠𝑠=𝑓𝑓𝑓𝑓𝑚𝑚𝑎𝑎𝑓𝑓𝑓𝑓,𝑎𝑎~𝑁𝑁 �𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠=𝑓𝑓𝑓𝑓𝑚𝑚𝑎𝑎𝑓𝑓𝑓𝑓,𝑎𝑎
, 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠=𝑓𝑓𝑓𝑓𝑚𝑚𝑎𝑎𝑓𝑓𝑓𝑓,𝑎𝑎

𝑓𝑓𝑎𝑎~𝑁𝑁 �𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 0.1� 

LFSR recruitment 

3 𝐹𝐹𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑚𝑚 × (1 − 𝑒𝑒−𝑍𝑍𝑠𝑠,𝑎𝑎,𝑦𝑦)𝐶𝐶𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑚𝑚 = 𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦 ×  𝑍𝑍𝑠𝑠,𝑎𝑎,𝑦𝑦
𝐹𝐹𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑚𝑚 = 𝑠𝑠𝑒𝑒𝑙𝑙𝑠𝑠,𝑎𝑎,𝑚𝑚 × 𝐹𝐹𝑠𝑠,𝑎𝑎,𝑦𝑦 × 𝛿𝛿𝑚𝑚 

Catch 

4 𝑍𝑍𝑠𝑠,𝑎𝑎,𝑦𝑦 = �𝐹𝐹𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑚𝑚 + 𝑀𝑀𝑠𝑠,𝑎𝑎 
∀𝑚𝑚

𝑀𝑀𝑠𝑠,𝑎𝑎 ~ 𝑁𝑁 �𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑎𝑎
∗ 0.01� ,𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑎𝑎

Total instantaneous 
mortality 

5 2𝜎𝜎𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑗𝑗𝐼𝐼𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑗𝑗 = 𝑞𝑞𝑦𝑦,𝑗𝑗𝑣𝑣𝑠𝑠,𝑎𝑎,𝑗𝑗𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦 × exp�𝜖𝜖𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑗𝑗 − � 2
𝜖𝜖𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑗𝑗~𝑁𝑁�0,𝜎𝜎𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑗𝑗�  

𝜎𝜎𝑠𝑠,𝑎𝑎,𝑦𝑦,𝑗𝑗 = 𝑞𝑞𝑦𝑦,𝑗𝑗𝑣𝑣𝑠𝑠,𝑎𝑎,𝑗𝑗𝑁𝑁𝑠𝑠,𝑎𝑎,𝑦𝑦𝐶𝐶𝐶𝐶𝑗𝑗  

𝐶𝐶𝐶𝐶𝑗𝑗~𝑈𝑈 �𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗 − 0.1,𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗 + 0.1� 

𝐼𝐼𝑦𝑦,𝑗𝑗 = �𝐼𝐼𝑠𝑠=𝑓𝑓𝑓𝑓𝑚𝑚𝑎𝑎𝑓𝑓𝑓𝑓,𝑎𝑎,𝑦𝑦,𝑗𝑗 + 𝐼𝐼𝑠𝑠=𝑚𝑚𝑎𝑎𝑓𝑓𝑓𝑓,𝑎𝑎,𝑦𝑦,𝑗𝑗  
∀𝑎𝑎

Indices of abundance  

6 = 𝐿𝐿∞�1− 𝑒𝑒−𝐾𝐾(𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗𝑓𝑓𝑗𝑗(𝑎𝑎𝑛𝑛)−𝑗𝑗0)�𝐿𝐿𝑚𝑚  
2 � ,𝐿𝐿∞𝑛𝑛    𝜎𝜎𝐿𝐿∞

 ~𝑁𝑁 �𝐿𝐿∞𝑎𝑎𝑎𝑎𝑎𝑎,𝜎𝜎𝐿𝐿∞
2 = 0.1𝐿𝐿∞𝑎𝑎𝑎𝑎𝑎𝑎

2𝜎𝜎𝐾𝐾 2)2] , 2𝐾𝐾~𝑁𝑁 [𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 + � 2 �𝜌𝜌 �𝐿𝐿∞𝑚𝑚 − 𝐿𝐿∞𝑎𝑎𝑎𝑎𝑎𝑎� ,�(1 − 𝜌𝜌2)(𝜎𝜎𝐾𝐾    𝜎𝜎𝐾𝐾 = 0.1𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎  
𝜎𝜎𝐿𝐿∞

von Bertalanffy 
length calculation 

7 

 
 

𝑦𝑦𝑗𝑗 = 𝜞𝜞𝛼𝛼𝑗𝑗 + 𝜀𝜀𝑗𝑗, where 𝜀𝜀𝑗𝑗~𝑀𝑀𝐶𝐶𝑁𝑁(0,𝑯𝑯) 
𝛼𝛼𝑗𝑗 = 𝛼𝛼𝑗𝑗−1 + 𝜂𝜂𝑗𝑗, where 𝜂𝜂𝑗𝑗~𝑀𝑀𝐶𝐶𝑁𝑁(0,𝑸𝑸) 

DFA model 

Parameter definitions: abundance in numbers (N), recruits in numbers (R), total instantaneous mortality (Z), age of plus 
group (A), pre-recruits in numbers (Npups), natural mortality (M), reproductive periodicity (RP), proportion mature (p), 
fecundity (f), fishing mortality (F), catch in numbers (C), proportion of fishing mortality attributed to fleet (δ),  index of 
abundance (I), catchability (q), vulnerability (v),  length (L), von Bertalanffy growth parameters (L∞ and K), correlation 
(ρ), rescaled index of abundance (y), factor loadings matrix (Γ), DFA common trend (α) 
Subscripts: sex (s), age (a), age of plus group (A), year (y), fleet (i), survey (j), individual (n), time (t) 

 
 
 
 
 
 
 
 
 



 
 
 
Table 2. List of trials simulated for the Atlantic sharpnose shark. F is instantaneous fishing 
mortality pattern, I represents index of abundance indexed by survey number, CV is coefficient 
of variation, and q is catchability coefficient. Increasing and decreasing are indicated by Inc/Dec 
or ↑/↓. Trials were labeled according to the F pattern (constant – ConstF, increasing – IncF, 
decreasing – DecF, or increasing then decreasing – U F), changing catchability (constant – c, 
knife-edged – k, or gradual – g), and indexed by the survey-specific pattern (1, 2, or 3). Trials 
with 4 simulated surveys were indexed by 4. 
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Trial name 
(3 surveys) Fa I1 CV I2 CV I3 CV I1 qb I2 q I3 qb I4 CV I4 q Trial name 

(4 surveys)c 

Figure 4 
plotting 
labels 

Const F 
no 
change 

ConstF_c1 Const F (F=0.2) 0.5 0.5 0.5 const q const q const q 0.5 const q ConstF_c1_4 
Const F 
no change ConstF_c2 Const F (F=0.2) 0.3 0.5 0.7 const q const q const q 0.5 const q ConstF_c2_4 

ConstF_c3 Const F (F=0.2) 0.7 0.5 0.3 const q const q const q 0.5 const q ConstF_c3_4 

Const F  
knife-
edge 

ConstF_k1 Const F (F=0.2) 0.5 0.5 0.5 knife ↑q const q knife ↓q 0.5 const q ConstF_k1_4 
Const F  
knife-
edge 

ConstF_k2 Const F (F=0.2) 0.3 0.5 0.7 knife ↑q const q knife ↓q 0.5 const q ConstF_k2_4 

ConstF_k3 Const F (F=0.2) 0.7 0.5 0.3 knife ↑q const q knife ↓q 0.5 const q ConstF_k3_4 

Const F  
gradual 

ConstF_g1 Const F (F=0.2) 0.5 0.5 0.5 grad ↑q const q grad ↓q 0.5 const q ConstF_g1_4 
Const F  
gradual ConstF_g2 Const F (F=0.2) 0.3 0.5 0.7 grad ↑q const q grad ↓q 0.5 const q ConstF_g2_4 

ConstF_g3 Const F (F=0.2) 0.7 0.5 0.3 grad ↑q const q grad ↓q 0.5 const q ConstF_g3_4 

Inc F no 
change 

IncF_c1 ↑F (F=0 / 0.4) 0.5 0.5 0.5 const q const q const q 0.5 const q IncF_c1_4 
Inc F no 
change IncF_c2 ↑F (F=0 / 0.4) 0.3 0.5 0.7 const q const q const q 0.5 const q IncF_c2_4 

IncF_c3 ↑F (F=0 / 0.4) 0.7 0.5 0.3 const q const q const q 0.5 const q IncF_c3_4 

Inc F 
knife-
edge 

IncF_k1 ↑F (F=0 / 0.4) 0.5 0.5 0.5 knife ↑q const q knife ↓q 0.5 const q IncF_k1_4 
Inc F 
knife-
edge 

IncF_k2 ↑F (F=0 / 0.4) 0.3 0.5 0.7 knife ↑q const q knife ↓q 0.5 const q IncF_k2_4 

IncF_k3 ↑F (F=0 / 0.4) 0.7 0.5 0.3 knife ↑q const q knife ↓q 0.5 const q IncF_k3_4 

Inc F 
gradual 

IncF_g1 ↑F (F=0 / 0.4) 0.5 0.5 0.5 grad ↑q const q grad ↓q 0.5 const q IncF_g1_4 
Inc F 
gradual IncF_g2 ↑F (F=0 / 0.4) 0.3 0.5 0.7 grad ↑q const q grad ↓q 0.5 const q IncF_g2_4 

IncF_g3 ↑F (F=0 / 0.4) 0.7 0.5 0.3 grad ↑q const q grad ↓q 0.5 const q IncF_g3_4 

Dec F no 
change 

DecF_c1 ↓F (F=0.4 / 0) 0.5 0.5 0.5 const q const q const q 0.5 const q DecF_c1_4 
Dec F no 
change DecF_c2 ↓F (F=0.4 / 0) 0.3 0.5 0.7 const q const q const q 0.5 const q DecF_c2_4 

DecF_c3 ↓F (F=0.4 / 0) 0.7 0.5 0.3 const q const q const q 0.5 const q DecF_c3_4 

Dec F  
knife-
edge 

DecF_k1 ↓F (F=0.4 / 0) 0.5 0.5 0.5 knife ↑q const q knife ↓q 0.5 const q DecF_k1_4 
Dec F 
knife-
edge 

DecF_k2 ↓F (F=0.4 / 0) 0.3 0.5 0.7 knife ↑q const q knife ↓q 0.5 const q DecF_k2_4 

DecF_k3 ↓F (F=0.4 / 0) 0.7 0.5 0.3 knife ↑q const q knife ↓q 0.5 const q DecF_k3_4 

Dec F  
gradual 

DecF_g1 ↓F (F=0.4 / 0) 0.5 0.5 0.5 grad ↑q const q grad ↓q 0.5 const q DecF_g1_4 
Dec 
Fgradual DecF_g2 ↓F (F=0.4 / 0) 0.3 0.5 0.7 grad ↑q const q grad ↓q 0.5 const q DecF_g2_4 

DecF_g3 ↓F (F=0.4 / 0) 0.7 0.5 0.3 grad ↑q const q grad ↓q 0.5 const q DecF_g3_4 

U F no 
change 

UF_c1 UF (F=0 / 0.4 / 0.2 / 0.05) 0.5 0.5 0.5 const q const q const q 0.5 const q UF_c1_4 U F no 
change UF_c2 UF (F=0 / 0.4 / 0.2 / 0.05) 0.3 0.5 0.7 const q const q const q 0.5 const q UF_c2_4 



 

 
Table 3. List of trials simulated for the sandbar shark. ‘Missing data?’ indicates whether survey 
indices were complete or whether missing values were included to more accurately represent 
available information for the sandbar shark, q indicates catchability coefficient, and only one 
instantaneous fishing mortality (F) scenario was explored. ↑ represents increasing patterns in q, 
while ↓ represents decreasing patterns in q. Prefixes M and C indicate missing data and complete 
data scenarios, respectively.  
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plotting 
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Trial Missing 
data? Fa q pattern Trial Missing 

data? Fa q pattern 
Figure  
plotting 
labels 

M0 SB1 Yes SB_F const  SB101 No SB_F const  C0 

M1_up 

SB2 Yes SB_F ↑q S1 SB102 No SB_F ↑q S1 

C1_up 

SB3 Yes SB_F ↑q S2 SB103 No SB_F ↑q S2 

SB4 Yes SB_F ↑q S3 SB104 No SB_F ↑q S3 

SB5 Yes SB_F ↑q S4 SB105 No SB_F ↑q S4 

SB6 Yes SB_F ↑q S5 SB106 No SB_F ↑q S5 

SB7 Yes SB_F ↑q S6 SB107 No SB_F ↑q S6 

SB8 Yes SB_F ↑q S7 SB108 No SB_F ↑q S7 

M1_down 

SB9 Yes SB_F ↓q S1 SB109 No SB_F ↓q S1 

C1_down 

SB10 Yes SB_F ↓q S2 SB110 No SB_F ↓q S2 

SB11 Yes SB_F ↓q S3 SB111 No SB_F ↓q S3 

SB12 Yes SB_F ↓q S4 SB112 No SB_F ↓q S4 

SB13 Yes SB_F ↓q S5 SB113 No SB_F ↓q S5 

SB14 Yes SB_F ↓q S6 SB114 No SB_F ↓q S6 

SB15 Yes SB_F ↓q S7 SB115 No SB_F ↓q S7 

M2_up 

SB16 Yes SB_F ↑q S1-S3 SB116 No SB_F ↑q S1-S3 

C2_up SB17 Yes SB_F ↑q S3-S5 SB117 No SB_F ↑q S3-S5 

SB18 Yes SB_F ↑q S5-S7 SB118 No SB_F ↑q S5-S7 

M2_down SB19 Yes SB_F ↓q S1-S3 SB119 No SB_F ↓q S1-S3 C2_down 

UF_c3 UF (F=0 / 0.4 / 0.2 / 0.05) 0.7 0.5 0.3 const q const q const q 0.5 const q UF_c3_4 

U F 
knife-
edge 

UF_k1 UF (F=0 / 0.4 / 0.2 / 0.05) 0.5 0.5 0.5 knife ↑q const q knife ↓q 0.5 const q UF_k1_4 
U F knife-
edge UF_k2 UF (F=0 / 0.4 / 0.2 / 0.05) 0.3 0.5 0.7 knife ↑q const q knife ↓q 0.5 const q UF_k2_4 

UF_k3 UF (F=0 / 0.4 / 0.2 / 0.05) 0.7 0.5 0.3 knife ↑q const q knife ↓q 0.5 const q UF_k3_4 

U F 
gradual 

UF_g1 UF (F=0 / 0.4 / 0.2 / 0.05) 0.5 0.5 0.5 grad ↑q const q grad ↓q 0.5 const q UF_g1_4 
U F 
gradual UF_g2 UF (F=0 / 0.4 / 0.2 / 0.05) 0.3 0.5 0.7 grad ↑q const q grad ↓q 0.5 const q UF_g2_4 

UF_g3 UF (F=0 / 0.4 / 0.2 / 0.05) 0.7 0.5 0.3 grad ↑q const q grad ↓q 0.5 const q UF_g3_4 

Simulation Notes:  

a shifts in F for ↑F and ↓F occurred in year 51, and shifts in UF occurred at years 41, 51, and 56 

b all knife-edged shifts in q occurred at year 51; gradual shifts in q1 and q3 spanned 15 and 10 years, respectively,  starting at year 51 

c when present, 4th index started at year 55 



SB20 Yes SB_F ↓q S3-S5 SB120 No SB_F ↓q S3-S5 

SB21 Yes SB_F ↓q S5-S7 SB121 No SB_F ↓q S5-S7 

M2_mix 

SB22 Yes SB_F ↑q S1,↓q S3 SB122 No SB_F ↑q S1,↓q S3 

C2_mix SB23 Yes SB_F ↑q S3,↓q S5 SB123 No SB_F ↑q S3,↓q S5 

SB24 Yes SB_F ↑q S5,↓q S7 SB124 No SB_F ↑q S5,↓q S7 

M2_mix 

SB25 Yes SB_F ↓q S1,↑q S3 SB125 No SB_F ↓q S1,↑q S3 

C2_mix SB26 Yes SB_F ↓q S3,↑q S5 SB126 No SB_F ↓q S3,↑q S5 

SB27 Yes SB_F ↓q S5,↑q S7 SB127 No SB_F ↓q S5,↑q S7 

M3_up 

SB28 Yes SB_F ↑q S1-S3-S5 SB128 No SB_F ↑q S1-S3-S5 

C3_up SB29 Yes SB_F ↑q S2-S4-S6 SB129 No SB_F ↑q S2-S4-S6 

SB30 Yes SB_F ↑q S3-S5-S7 SB130 No SB_F ↑q S3-S5-S7 

M3_down 

SB31 Yes SB_F ↓q S1-S3-S5 SB131 No SB_F ↓q S1-S3-S5 

C3_down SB32 Yes SB_F ↓q S2-S4-S6 SB132 No SB_F ↓q S2-S4-S6 

SB33 Yes SB_F ↓q S3-S5-S7 SB133 No SB_F ↓q S3-S5-S7 

M3_mix 

SB34 Yes SB_F ↑q S1, ↓q S3-S5 SB134 No SB_F ↑q S1, ↓q S3-S5 

C3_mix SB35 Yes SB_F ↑q S2, ↓q S4-S6 SB135 No SB_F ↑q S2, ↓q S4-S6 

SB36 Yes SB_F ↑q S3, ↓q S5-S7 SB136 No SB_F ↑q S3, ↓q S5-S7 

M3_mix 

SB37 Yes SB_F ↓q S1, ↑q S3-S5 SB137 No SB_F ↓q S1, ↑q S3-S5 

C3_mix SB38 Yes SB_F ↓q S2, ↑q S4-S6 SB138 No SB_F ↓q S2, ↑q S4-S6 

SB39 Yes SB_F ↓q S3, ↑q S5-S7 SB139 No SB_F ↓q S3, ↑q S5-S7 

Simulation Notes 
     a SB F = 0 in years 1-45, 0.1 in years 46-55, 0.3 in years 56-65, 0.2 in years 66-75, 0.05 in years 76-100  

     CV1=0.38, CV2=0.48, CV3=0.65, CV4=0.24, CV5=0.30, CV6=0.36, CV7=0.40 

 
 
 
  



Figures 
 
Figure 1. Example DFA model run for the first iteration of sandbar shark Trial SB129, including 
(a) input data as shown as mean-standardized survey indices, (b) corresponding factor loadings, 
denoting the strength of influence of the resulting DFA-predicted trend on each survey, (c) 
resulting DFA-predicted trend with 95% confidence intervals (CIs) in log space and the “true” 
simulated abundance trend log-transformed and rescaled superimposed, and (d) the 
backtransformed DFA trend with 95% CIs and the rescaled simulated abundance superimposed. 
Note that out of seven input survey indices, four do not undergo shift in catchability, while three 
experience increases in catchability (denoted by solid lines).  

 
  



Figure 2. Selectivity curves of fishing fleets and surveys simulated in the Atlantic sharpnose (top 
left) and sandbar shark (top right and bottom) operating models (solid lines). Selectivity curves 
estimated within the estimating model are superimposed with dashed lines.  

 
  



Figure 3. Taken from Peterson et al. (2021). Alternate simulation scenarios for the Atlantic 
sharpnose shark (left) and sandbar shark (right) including various time-varying catchability 
configurations (top row), fishing mortality patterns for Atlantic sharpnose shark simulations 
(bottom left), and available years of survey data in the ‘Missing data’ scenario for the sandbar 
shark simulation for each survey (bottom right).  

 
 
  



Figure 4. Survey-specific female selectivity as fitted from the sandbar shark CI assessment for 
iteration 1 of Trial SB101 (left). The average selectivity, calculated by averaging selectivity 
curves across surveys and scaling to a maximum selectivity of one, is superimposed. The 
random-walk both-sex selectivity as fitted within the sandbar shark DFA assessment for iteration 
1 of Trial SB101 is shown on the right.  

 
  



Figure 5. Example of the fleet-specific, time-aggregated length compositions from the CI 
assessment of the first iteration of the SB29 simulation scenario for the sandbar shark as plotted 
using r4ss (Taylor et al., 2021). 

 
  



Figure 6. Example of the fleet-specific, time-aggregated length compositions from the DFA 
assessment of the first iteration of the SB29 simulation scenario for the sandbar shark as plotted 
using r4ss (Taylor et al., 2021). 

 
  



Figure 7. Estimated relative depletion (estimated depletion / simulated depletion) from CI 
assessments (darker shaded violins for each color; assessments fitted using conflicting survey 
indices) compared to DFA assessments (lighter shaded violins for each color; assessments fitted 
using DFA predicted trends as relative abundance inputs) in the Atlantic sharpnose shark 
simulations. Note that accurately estimated relative depletion should equal 1. Simulation 
scenarios are grouped based on trials in which survey catchability did not change (“no change”), 
survey catchability underwent a knife-edged shift in two surveys (“knife-edge”), and survey 
catchability underwent a gradual shift (“gradual”). Each row is separated based on the underlying 
fishing mortality (F) scenarios: no shift (Const F), increase in F (Inc F), decrease in F (Dec F), 
and an increase then decrease in F (U F). Simulations in which three surveys were simulated are 
in the left column and those for four surveys simulated are in the right column. Note the variable 
y-axes. The shape of the violins indicate the distribution of parameter estimates, where the width 
of the violin corresponds to the quantity of results that fall at that respective y-value. The median 
(white dot), interquartile range (black bar), and upper/lower adjacent values corresponding to a 
box plot limits (thin black line) are also highlighted. For full scenario-specific results, refer to the 
Supplementary material.  



 
  



Figure 8. Estimated relative final F (estimated Ffinal / simulated Ffinal) from CI assessments 
(darker shaded violins for each color; assessments fitted using conflicting survey indices) 
compared to DFA assessments (lighter shaded violins for each color; assessments fitted using 
DFA predicted trends as relative abundance inputs) in the Atlantic sharpnose shark simulations. 
Note that accurately estimated relative Ffinal should equal 1. Simulation scenarios are grouped 
based on trials in which survey catchability did not change (“no change”), survey catchability 
underwent a knife-edged shift in two surveys (“knife-edge”), and survey catchability underwent 
a gradual shift (”gradual”). Each row is separated based on the underlying fishing mortality (F) 
scenarios: no shift (Const F), increase in F (Inc F), decrease in F (Dec F), and an increase then 
decrease in F (U F). Simulations in which three surveys were simulated are in the left column 
and those four surveys simulated are in the right column. Note the variable y-axes. The shape of 
the violins indicate the distribution of parameter estimates, where the width of the violin 
corresponds to the quantity of results that fall at that respective y-value. The median (white dot), 
interquartile range (black bar), and upper/lower adjacent values corresponding to a box plot 
limits (thin black line) are also highlighted. For full scenario-specific results, refer to the 
Supplementary material. 



 
  



Figure 9. Estimated relative depletion (estimated depletion / simulated depletion) from CI 
assessments (darker shaded violins for each color; assessments fitted using conflicting survey 
indices) compared to DFA assessments (lighter shaded violins for each color; assessments fitted 
using DFA predicted trends as relative abundance inputs) in the sandbar shark simulations. Note 
that accurately estimated relative depletion should equal 1. Simulation scenarios are grouped 
based on the number of surveys that experienced shifting catchability (top row – 0 and 1, middle 
row – 2, bottom row – 3) and direction of shifting patterns in catchability (“up” denotes 
scenarios in which time-varying q increased for all surveys that experienced shifts; “down” 
denotes scenarios in which time-varying q decreased for all shifting surveys; “mix” denotes 
scenarios in which time-varying q increased for one or more surveys and decreased for one or 
more surveys; the first “mix” label (pink violins) denotes scenarios in which the first survey with 
time-varying q increased and the remaining surveys with time-varying q decreased, and the 
second “mix” label (purple violins) denotes scenarios in which the first survey with time-varying 
q underwent a decrease, and the remaining surveys with time-varying q underwent an increase). 
Simulations in which surveys with complete data were simulated are in the left column and those 
with missing data are in the right column. Note the variable y-axes. The shape of the violins 
indicate the distribution of parameter estimates, where the width of the violin corresponds to the 
quantity of results that fall at that respective y-value. The median (white dot), interquartile range 
(black bar), and upper/lower adjacent values corresponding to a box plot limits (thin black line) 
are also highlighted. For full scenario-specific results, refer to the Supplementary material.  



 
  



Figure 10. Estimated relative final F (estimated Ffinal / simulated Ffinal) from CI assessments 
(darker shaded violins for each color; assessments fitted using conflicting survey indices) 
compared to DFA assessments (lighter shaded violins for each color; assessments fitted using 
DFA predicted trends as relative abundance inputs) in the sandbar shark simulations. Note that 
accurately estimated relative Ffinal should equal 1. Simulation scenarios are grouped based on the 
number of surveys that experienced shifting catchability (top row – 0 and 1, middle row – 2, 
bottom row – 3) and direction of shifting patterns in catchability (“up” denotes scenarios in 
which time-varying q increased for all surveys that experienced shifts; “down” denotes scenarios 
in which time-varying q decreased for all shifting surveys; “mix” denotes scenarios in which 
time-varying q increased for one or more survey and decreased for one or more surveys; the first 
“mix” label (pink violins) denotes scenarios in which the first survey with time-varying q 
increased and the remaining surveys with time-varying q decreased, and the second “mix” label 
(purple violins) denotes scenarios in which the first survey with time-varying q underwent a 
decrease, and the remaining surveys with time-varying q underwent an increase). Simulations in 
which surveys with complete data were simulated are in the left column and those with missing 
data are in the right column. Note the variable y-axes. The shape of the violins indicate the 
distribution of parameter estimates, where the width of the violin corresponds to the quantity of 
results that fall at that respective y-value. The median (white dot), interquartile range (black bar), 
and upper/lower adjacent values corresponding to a box plot limits (thin black line) are also 
highlighted. For full scenario-specific results, refer to the Supplementary material.  
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Reconciling conflicting survey indices of abundance prior to stock 
assessment 
 
Cassidy D. Peterson, Dean L. Courtney, Enric Cortés, and Robert J. Latour 

 

Note: For full results detailing the ability of the DFA to reconcile multiple conflicting survey 
indices, including how closely DFA trends approximate simulated stock abundance and what 
sensitivities influenced survey weighting (e.g. as measured by factor loadings) and thereby DFA 
performance, we refer the reader to the companion manuscript (Peterson et al., 2021).  
 
Dynamic factor analysis (DFA) rescaling approach from Peterson et al. (2021)  
We developed a DFA rescaling approach to modify the input survey indices in a manner 
consistent with the requirements of DFA, which preserves the error structure and the 
relative scale of the survey indices, and allows for backtransformation of the resulting DFA 
index out of detrended, log-scale. The rescaling approach was simulation tested in Peterson 
et al. (2021) and is as follows:  

1) Each survey index (i) was multiplied by a constant (ci), which is comparable to redefining 
effort. The choice of ci for each survey was determined iteratively, by arbitrarily defining 
a vector of all constants for each survey, c = [c1, …, cn] for all indices i=1 to n, and adjusting 
each ci until the conditions outlined below (Aa–Ad) were met within the steps of the 
rescaling approach outlined here. 

2) All indices from step 1 were log-transformed, thereby normalizing survey error.  
3) Each log-transformed survey index from step 2 was centered and demeaned by subtracting 

and dividing each index by the survey-specific mean.  
4) The global standard deviation (GSD) was estimated for all demeaned survey indices, 

collectively (from step 3).  
5) Each demeaned index was divided by the GSD, comparable to z-scoring the index.  
6) The DFA was run.  
7) The resulting DFA-predicted trend was back-transformed by first multiplying by the GSD 

and then exponentiating with bias correction. Annual standard errors estimated by the DFA 
model were multiplied by the GSD (following the transformation of variance rule: 
𝑆𝑆𝑆𝑆(𝑎𝑎𝑎𝑎) = 𝑎𝑎 × 𝑆𝑆𝑆𝑆(𝑋𝑋), where a is a constant), representing lognormal error of the DFA 
trend.  
 

A) The choice in ci should result in the following conditions (a–c) being met within the steps 
of the rescaling approach outlined above:  

a. The mean of each log-transformed survey index (from step 2) was greater than zero. 
Note that if the logged survey-specific mean is close to zero, then the rescaling 
approach would not work, because we would essentially be dividing by zero in step 
3. Further, if a survey index is relatively small, then the mean of the log transformed 
index may be negative, and dividing by a negative can reverse the trend of the 



index. In practice, cis that resulted in log-transformed survey index means ≳2.5, 
when possible, produced the best results. 

b. The resulting GSD (step 4) was small (GSD<<1). When the GSD is greater than 
one, the scale of the back-transformed DFA-predicted trend is affected, resulting in 
unrealistic predicted changes in abundance.  

c. Most importantly, the standard deviation of each resulting transformed index (step 
5) was approximately equal to 1. This ensures that the format of the input survey 
index most appropriately approximates a z-scored index, with a mean of zero and 
a standard deviation of 1, as recommended in DFA applications (Holmes et al. 
2014). When c was chosen so that the standard deviation of an input index was 
greater than one, the resulting DFA-predicted trend overfitted the corresponding 
survey, and fit more poorly to the remaining surveys.  

d. The resulting back-transformed trend should follow changes in magnitude 
consistent with those of the survey inputs. Multiple combinations of c can fit the 
above requirements; however, we want to choose constants that preserve the 
relative trend of the input surveys. For example, if the starting and ending points of 
a (or multiple) largely reliable input survey(s) change by an order of magnitude of 
~2, then the resulting back-transformed trend may not be appropriate if it changes 
by an order of 0.5 or 4. Try to maintain a consistent and reliable trend following the 
raw survey indices. This is obviously challenging if the analyst is unsure of what 
survey inputs are reliable and the user may have to rely on best judgement. Note 
that this recommendation is not important if the magnitude of change of the 
resulting DFA index is not of interest and if the underlying abundance trend is not 
a one-way trip.  

We recommend ensuring that the raw survey index follows the same general pattern across 
each step of the rescaling process, and that the resulting trend is realistic given the input data. In 
our application, the pattern of the DFA trend estimated from our rescaling approach was very 
similar to the DFA trend estimated from a log-transformed, then traditionally z-scored survey 
index. (Although, in a traditionally run DFA, we cannot back transform the resulting DFA trend 
out of log-space). We also recommend ensuring that the mean fit ratio is low, as the mean fit ratio 
will increase with a less ideal vector of constants, c. 

It is important to note that the ability of the DFA assessment to accurately estimate relative 
depletion and fishing mortality in the final year of the EM (Ffinal) depends on the appropriate 
implementation of the rescaling approach. In the Atlantic sharpnose shark simulation, the choice 
in constants in the DFA rescaling protocol affected the results of the corresponding assessment. 
These effects were greater in the ‘one-way trip’ scenarios (F2 and F3), because the abundance 
pattern was not ‘bounded’ as in more complex fishing mortality scenarios (F4). The vector of 
constants was less important in the sandbar shark scenario, likely because the trend was slightly 
more complex than a ‘one-way trip’ and because the greater number of surveys reduced the 
possible combinations of constants that could be applied to each scenario.   

 



Treatment of length composition data for the DFA estimation model 
For the DFA EM, length compositions were generated by first tabulating the number of 
observations that fell within each length bin for each survey, as is the traditional approach 
for calculating length composition data within Stock Synthesis. These length compositions 
for each survey were then multiplied by a weighting factor. The weighting factor was 
obtained by calculating the relative strength of each factor loading (Γj/max(Γ)). Consider the 
first iteration of the Atlantic sharpnose simulation scenario UF_knife_1:  

1. Generate length compositions for each survey (LenComp1, LenComp2, Lencomp3) 
2. Get factor loadings for each survey: Γ1=0.39, Γ2=0.02, Γ3=0.38.   
3. Calculate factor loading based weighting factor (wj = Γj/max(Γ)): w1=1.00, w2=0.05, 

w3=0.97. 
4. Multiply the corresponding length composition with the weighting factor and sum across 

surveys to obtain the DFA length composition: LenCompDFA = Σj(LenCompj × wj)  
We set the weight for negative factor loadings equal to zero, though a small constant may also be 
explored as an appropriate treatment. 
  
Alternate axes of uncertainty explored 
The Atlantic sharpnose shark simulation study also explored the impacts of (1) survey variability 
(via coefficients of variation; CV) and (2) number of surveys.  
 
Survey variability  
The CI assessment performance varied slightly based on survey CV (e.g. the difference between 
trials C22–C24; Figures S2–S5) and depended on the combination of survey variability and shift 
in catchability. Surveys for which CV was smaller were more heavily weighted in the DFA trend 
(Peterson et al., 2021), which was also reflected in assessment performance estimates. As noted in 
the main text, when surveys with the smallest CVs underwent time-varying shifts in catchability 
in the opposite direction of the predominant trend in stock abundance, estimated depletion and 
terminal F were more biased in the DFA assessment (i.e., increasing catchability when the stock 
size was decreasing; IncF_k2, IncF_g2, ConstF_k2, constF_g2). Otherwise, the DFA assessment 
results were generally more consistent and precise across variations in survey variability compared 
to CI assessment results. Likewise, several CI assessment scenarios also experienced biases when 
catchability shifted in surveys with low CVs (e.g. DecF_k2, DecF_g2, SB C105, etc.; Figures S2–
S9). 

  
Number of surveys 
When an incomplete fourth survey index was added to each assessment model, the accuracy and 
precision of estimated depletion and Ffinal generally improved in both the CI and DFA assessment 
models (except in F1; Figures 1–2; e.g. consider C22–24 compared to D22–24; Figures S2–S5).   

 
Management reference points  
Across all simulations for each species, relevant management quantities, such as fishing mortality 
that would produce maximum sustainable yield, MSY, (FMSY; Figure S9), Fratio (terminal F/FMSY; 
Figure S10), spawning stock biomass that produces MSY (SSBMSY), SSBratio (terminal SSB/SSB0; 
Figure S12), and the ratio of SSBMSY to virgin spawning stock biomass (SSBMSY/SSB0; Figure S13) 
were examined. Notably, variations in key reference point estimates tend to follow observed 
patterns in corresponding parameter estimates (e.g. estimates in Fratio tended to correspond to bias 



patterns in Ffinal and estimates of SSBMSY tended to follow biases in relative depletion; compare 
plots –S10 and S2–S12). There were distinct differences in estimated FMSY for DecF and U F 
fishing mortality scenarios for the Atlantic sharpnose shark (Figure S9), though these differences 
were mostly eliminated when calculating Fratio (Figure S10). Estimates of SSBMSY were similar 
across EMs (Figure S11).  
 

 
Figure S1. Example of the sex-specific, age-length relationship for the sandbar shark as 
obtained from the terminal year of the simulation Trial SB101.  
  



Atlantic sharpnose shark complete results 
 

 
Figure S1. Estimated relative depletion (estimated depletion / simulated depletion) from CI 
assessments (darker shaded violins; assessments fitted using conflicting survey indices) 
compared to DFA assessments (lighter shaded violins; assessments fitted using DFA predicted 
trends as relative abundance inputs) in the Atlantic sharpnose shark simulations. Note that 



accurately estimated relative depletion should equal 1. Simulation scenarios correspond to 
Table 2, where c, k, and g indicate ‘constant,’ ‘knife-edged,’ and ‘gradual’ shifts in catchability. 
Each row is separated based on the underlying fishing mortality (F) scenarios: no shift (F1), 
increase in F (F2), decrease in F (F3), and an increase then decrease in F (F4). Simulations in 
which three surveys were simulated are in the left column and four surveys simulated are in the 
right column. Note the variable y-axes. The shape of the violins indicate the distribution of 
parameter estimates, where the width of the violin corresponds to the quantity of results that 
fall at that respective y-value. The median (white dot), interquartile range (black bar), and 
upper/lower adjacent values corresponding to a box plot limits (thin black line) are also 
highlighted. 
 



 
 
Figure S2. Estimated relative final F (estimated Ffinal / simulated Ffinal) from CI assessments 
(darker shaded violins; assessments fitted using conflicting survey indices) compared to DFA 
assessments (lighter shaded violins; assessments fitted using DFA predicted trends as relative 
abundance inputs) in the Atlantic sharpnose shark simulations. Note that accurately estimated 
relative depletion should equal 1. Simulation scenarios correspond to Table 2, where c, k, and g 
indicate ‘constant,’ ‘knife-edged,’ and ‘gradual’ shifts in catchability. Each row is separated 
based on the underlying fishing mortality (F) scenarios: no shift (F1), increase in F (F2), 



decrease in F (F3), and an increase then decrease in F (F4). Simulations in which three surveys 
were simulated are in the left column and four surveys simulated are in the right column. Note 
the variable y-axes. The shape of the violins indicate the distribution of parameter estimates, 
where the width of the violin corresponds to the quantity of results that fall at that respective 
y-value. The median (white dot), interquartile range (black bar), and upper/lower adjacent 
values corresponding to a box plot limits (thin black line) are also highlighted. 
 



 
 
Figure S3. Estimated relative virgin abundance in numbers (estimated N0 / simulated N0) from 
CI assessments (darker shaded violins; assessments fitted using conflicting survey indices) 
compared to DFA assessments (lighter shaded violins; assessments fitted using DFA predicted 
trends as relative abundance inputs) in the Atlantic sharpnose shark simulations. Note that 
accurately estimated relative N0 should equal 1. Simulation scenarios correspond to Table 2, 
where c, k, and g indicate ‘constant,’ ‘knife-edged,’ and ‘gradual’ shifts in catchability. Each row 
is separated based on the underlying fishing mortality (F) scenarios: no shift (F1), increase in F 



(F2), decrease in F (F3), and an increase then decrease in F (F4). Simulations in which three 
surveys were simulated are in the left column and four surveys simulated are in the right 
column. Note the variable y-axes. The shape of the violins indicate the distribution of parameter 
estimates, where the width of the violin corresponds to the quantity of results that fall at that 
respective y-value. The median (white dot), interquartile range (black bar), and upper/lower 
adjacent values corresponding to a box plot limits (thin black line) are also highlighted. 
 



 
 
Figure S4. Estimated root-mean square error (RMSE) of predicted abundance in numbers of 
fish from CI assessments (darker shaded violins; assessments fitted using conflicting survey 
indices) compared to DFA assessments (lighter shaded violins; assessments fitted using DFA 
predicted trends as relative abundance inputs) in the Atlantic sharpnose shark simulations. 
Lower RMSE indicates a more accurately estimated abundance series. Simulation scenarios 
correspond to Table 2, where c, k, and g indicate ‘constant,’ ‘knife-edged,’ and ‘gradual’ shifts in 
catchability. Each row is separated based on the underlying fishing mortality (F) scenarios: no 



shift (F1), increase in F (F2), decrease in F (F3), and an increase then decrease in F (F4). 
Simulations in which three surveys were simulated are in the left column and four surveys 
simulated are in the right column. Note the variable y-axes. The shape of the violins indicate 
the distribution of parameter estimates, where the width of the violin corresponds to the 
quantity of results that fall at that respective y-value. The median (white dot), interquartile 
range (black bar), and upper/lower adjacent values corresponding to a box plot limits (thin 
black line) are also highlighted. 



 

Sandbar shark complete results 
 

 
 
Figure S5. Estimated relative depletion (estimated depletion / simulated depletion) from CI 
assessments (darker shaded violins; assessments fitted using conflicting survey indices) 
compared to DFA assessments (lighter shaded violins; assessments fitted using DFA predicted 
trends as relative abundance inputs) in the sandbar shark simulations. Note that accurately 
estimated relative depletion should equal 1. Simulation scenarios correspond to Table 3. 
Simulations in which surveys with complete data were simulated are in the left column and 
with missing data are in the right column. Note the variable y-axes. The shape of the violins 
indicate the distribution of parameter estimates, where the width of the violin corresponds to 
the quantity of results that fall at that respective y-value. The median (white dot), interquartile 
range (black bar), and upper/lower adjacent values corresponding to a box plot limits (thin 
black line) are also highlighted. 



 

 
 
Figure S6. Estimated relative final F (estimated Ffinal / simulated Ffinal) from CI assessments 
(darker shaded violins; assessments fitted using conflicting survey indices) compared to DFA 
assessments (lighter shaded violins; assessments fitted using DFA predicted trends as relative 
abundance inputs) in the sandbar shark simulations. Note that accurately estimated relative 
Ffinal should equal 1. Simulation scenarios correspond to Table 3. Simulations in which surveys 
with complete data were simulated are in the left column and with missing data are in the right 
column. Note the variable y-axes. The shape of the violins indicate the distribution of parameter 
estimates, where the width of the violin corresponds to the quantity of results that fall at that 
respective y-value. The median (white dot), interquartile range (black bar), and upper/lower 
adjacent values corresponding to a box plot limits (thin black line) are also highlighted. 



 

 
 
Figure S7. Estimated relative virgin abundance in numbers of fish (estimated N0 / simulated 
N0) from CI assessments (darker shaded violins; assessments fitted using conflicting survey 
indices) compared to DFA assessments (lighter shaded violins; assessments fitted using DFA 
predicted trends as relative abundance inputs) in the sandbar shark simulations. Note that 
accurately estimated relative N0 should equal 1. Simulation scenarios correspond to Table 3. 
Simulations in which surveys with complete data were simulated are in the left column and 
with missing data are in the right column. Note the variable y-axes. The shape of the violins 
indicate the distribution of parameter estimates, where the width of the violin corresponds to 
the quantity of results that fall at that respective y-value. The median (white dot), interquartile 
range (black bar), and upper/lower adjacent values corresponding to a box plot limits (thin 
black line) are also highlighted. 



 

 
 
Figure S8. Estimated root-mean square error (RMSE) of predicted abundance in numbers of 
fish from CI assessments (darker shaded violins; assessments fitted using conflicting survey 
indices) compared to DFA assessments (lighter shaded violins; assessments fitted using DFA 
predicted trends as relative abundance inputs) in the sandbar shark simulations. Lower RMSE 
indicates a more accurately estimated abundance series. Simulation scenarios correspond to 
Table 3. Simulations in which surveys with complete data were simulated are in the left column 
and with missing data are in the right column. Note the variable y-axes. The shape of the violins 
indicate the distribution of parameter estimates, where the width of the violin corresponds to 
the quantity of results that fall at that respective y-value. The median (white dot), interquartile 
range (black bar), and upper/lower adjacent values corresponding to a box plot limits (thin 
black line) are also highlighted.  
   
 

 

 

 



 

 

Atlantic sharpnose shark management reference point results 
 

 
Figure S9. Estimated FMSY from CI assessments (darker shaded violins; assessments fitted using 
conflicting survey indices) compared to DFA assessments (lighter shaded violins; assessments 
fitted using DFA predicted trends as relative abundance inputs) in the Atlantic sharpnose shark 



 

simulations. Simulation scenarios correspond to Table 2, where c, k, and g indicate ‘constant,’ 
‘knife-edged,’ and ‘gradual’ shifts in catchability. Each row is separated based on the underlying 
fishing mortality (F) scenarios: no shift (F1), increase in F (F2), decrease in F (F3), and an 
increase then decrease in F (F4). Simulations in which three surveys were simulated are in the 
left column and four surveys simulated are in the right column. The shape of the violins indicate 
the distribution of parameter estimates, where the width of the violin corresponds to the 
quantity of results that fall at that respective y-value. The median (white dot), interquartile 
range (black bar), and upper/lower adjacent values corresponding to a box plot limits (thin 
black line) are also highlighted. 
 



 

 
 
Figure S10. Estimated Fratio (Ffinal/FMSY) from CI assessments (darker shaded violins; 
assessments fitted using conflicting survey indices) compared to DFA assessments (lighter 
shaded violins; assessments fitted using DFA predicted trends as relative abundance inputs) in 
the Atlantic sharpnose shark simulations. Simulation scenarios correspond to Table 2, where 
c, k, and g indicate ‘constant,’ ‘knife-edged,’ and ‘gradual’ shifts in catchability. Each row is 
separated based on the underlying fishing mortality (F) scenarios: no shift (F1), increase in F 
(F2), decrease in F (F3), and an increase then decrease in F (F4). Simulations in which three 



 

surveys were simulated are in the left column and four surveys simulated are in the right 
column. The shape of the violins indicate the distribution of parameter estimates, where the 
width of the violin corresponds to the quantity of results that fall at that respective y-value. 
The median (white dot), interquartile range (black bar), and upper/lower adjacent values 
corresponding to a box plot limits (thin black line) are also highlighted. 
 

  



 

 
 
Figure S11. Estimated SSBMSY (spawning-stock biomass that supports maximum sustainable 
yield) from CI assessments (darker shaded violins; assessments fitted using conflicting survey 
indices) compared to DFA assessments (lighter shaded violins; assessments fitted using DFA 
predicted trends as relative abundance inputs) in the Atlantic sharpnose shark simulations. 
Simulation scenarios correspond to Table 2, where c, k, and g indicate ‘constant,’ ‘knife-edged,’ 
and ‘gradual’ shifts in catchability. Each row is separated based on the underlying fishing 
mortality (F) scenarios: no shift (F1), increase in F (F2), decrease in F (F3), and an increase then 



 

decrease in F (F4). Simulations in which three surveys were simulated are in the left column 
and four surveys simulated are in the right column. The shape of the violins indicate the 
distribution of parameter estimates, where the width of the violin corresponds to the quantity 
of results that fall at that respective y-value. The median (white dot), interquartile range (black 
bar), and upper/lower adjacent values corresponding to a box plot limits (thin black line) are 
also highlighted. 
  



 

 
 
Figure S12. Estimated SSBratio (SSBfinal/SSB0) from CI assessments (darker shaded violins; 
assessments fitted using conflicting survey indices) compared to DFA assessments (lighter 
shaded violins; assessments fitted using DFA predicted trends as relative abundance inputs) in 
the Atlantic sharpnose shark simulations. Simulation scenarios correspond to Table 2, where c, 
k, and g indicate ‘constant,’ ‘knife-edged,’ and ‘gradual’ shifts in catchability. Each row is 
separated based on the underlying fishing mortality (F) scenarios: no shift (F1), increase in F 
(F2), decrease in F (F3), and an increase then decrease in F (F4). Simulations in which three 



 

surveys were simulated are in the left column and four surveys simulated are in the right 
column. The shape of the violins indicate the distribution of parameter estimates, where the 
width of the violin corresponds to the quantity of results that fall at that respective y-value. The 
median (white dot), interquartile range (black bar), and upper/lower adjacent values 
corresponding to a box plot limits (thin black line) are also highlighted. 
 

  



 

 
 
Figure S13. Estimated SSBMSY/SSB0 from CI assessments (darker shaded violins; assessments 
fitted using conflicting survey indices) compared to DFA assessments (lighter shaded violins; 
assessments fitted using DFA predicted trends as relative abundance inputs) in the Atlantic 
sharpnose shark simulations. Simulation scenarios correspond to Table 2, where c, k, and g 
indicate ‘constant,’ ‘knife-edged,’ and ‘gradual’ shifts in catchability. Each row is separated 
based on the underlying fishing mortality (F) scenarios: no shift (F1), increase in F (F2), 
decrease in F (F3), and an increase then decrease in F (F4). Simulations in which three surveys 
were simulated are in the left column and four surveys simulated are in the right column. The 



 

shape of the violins indicate the distribution of parameter estimates, where the width of the 
violin corresponds to the quantity of results that fall at that respective y-value. The median 
(white dot), interquartile range (black bar), and upper/lower adjacent values corresponding 
to a box plot limits (thin black line) are also highlighted. 
 
  



 

Table S1. List of age-specific proportion mature, natural mortality, and female fecundity for the 
simulated Atlantic sharpnose shark from SEDAR (2013). 
 

Age M 
Proportion 

mature 
Fecundity (no. 
female pups) 

1 0.209 0.185 0.401 

2 0.209 0.953 0.762 
3 0.209 0.999 1.133 

4 0.209 1.000 1.448 
5 0.209 1.000 1.686 

6 0.209 1.000 1.852 
7 0.209 1.000 1.963 

8 0.209 1.000 2.035 
9 0.209 1.000 2.081 

10 0.209 1.000 2.110 
11 0.209 1.000 2.128 

12 0.209 1.000 2.139 
13 0.209 1.000 2.146 

14 0.209 1.000 2.150 
15 0.209 1.000 2.153 

16 0.209 1.000 2.155 
17 0.209 1.000 2.156 

18 0.209 1.000 2.156 
 
Table S2. List of parameter values in the Atlantic sharpnose shark operating model. Steepness (h) 
and von Bertalanffy growth parameters were taken from SEDAR (2013). 
 

Parameter Value 
Survival-based stock–recruitment 

Z0 1.9044 
Zmin 0.209 
Smax 0.8114 
S0 0.1489 
Zfrac 0.8903 
β  0.5808 
h 0.56 
log(R0) 6.2035 
R0 494.4797 
Npups0 3320.671 
Sfrac 0.89 

von Bertalanffy growth 
Kavg 0.49 
L∞_avg 81.6 
t0 –0.97 

 



 

Table S3. List of age-specific female proportion mature, female natural mortality, and fecundity 
for the simulated sandbar shark population from SEDAR (2017). 
 

Age 

Natural 
mortality 

(M) 
Proportion  

mature 
Fecundity  
(no. pups) 

0 0.1604 0 6.1390 
1 0.1604 0 6.6107 
2 0.1604 0 7.0274 
3 0.1604 0 7.3955 
4 0.1604 0 7.7206 
5 0.1604 0 8.0079 
6 0.1578 0.01 8.2616 
7 0.1168 0.02 8.4857 
8 0.1168 0.03 8.6838 
9 0.1168 0.06 8.8587 

10 0.1168 0.12 9.0132 
11 0.1168 0.21 9.1497 
12 0.1168 0.33 9.2703 
13 0.1168 0.49 9.3768 
14 0.1168 0.65 9.4709 
15 0.1168 0.78 9.5540 
16 0.1168 0.88 9.6274 
17 0.1168 0.93 9.6923 
18 0.1168 0.96 9.7496 
19 0.1168 0.98 9.8002 
20 0.1168 0.99 9.8449 
21 0.1168 0.99 9.8844 
22 0.1168 1 9.9193 
23 0.1168 1 9.9501 
24 0.1168 1 9.9774 
25 0.1168 1 10.0014 
26 0.1168 1 10.0227 
27 0.1168 1 10.0414 
28 0.1168 1 10.0580 
29 0.1168 1 10.0727 
30 0.1168 1 10.0856 
31 0.1168 1 10.0970 

 
  



 

Table S4. List of parameter values in the sandbar shark operating model. Steepness (h) and von 
Bertalanffy growth parameters were taken from SEDAR (2017). 
 

Parameter Value 
Survival-based stock–recruitment 
Z0 1.0715 
Zmin 0.1604 
Smax 0.8518 
S0 0.3377 
Zfrac 0.8503 
β  0.3658 
h 0.3 
log(R0) 6.9078 
R0 1000 
Npups0 2919.848 

von Bertalanffy growth 
 Male Female 

Kavg 0.15 0.12 
L∞_avg 172.97 181.15 
t0 –2.33 –3.09 



 

Table S5. Table describing how selectivity was modeled in each EM. Selectivity parameters that 
were fixed are denoted by values in the “Fixed params” columns. Shaded boxes indicate 
selectivity patterns with fewer parameters. Note that Atlantic sharpnose shark survey 
selectivities were estimated, but with tighter priors (i.e., lower standard deviations). 
 

Atlantic sharpnose shark Fixed params - Female Fixed params - Male offset 

EM  Survey selectivity Time 
blocks? P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 

all EMs - 1 
fishery F1 - double normal No                         

CI EM - 3 
surveys 

S1 - logistic 
No 

                       
S2 - logistic                        
S3 - logistic                         

DFA EM - 3 
surveys SDFA - logistic No                         

CI EM - 4 
surveys 

S1 - logistic 

No 

                       
S2 - logistic                        
S3 - logistic                        
S4 - logistic                         

DFA EM - 4 
surveys SDFA - logistic Yes                         

Sandbar shark Fixed params - Female Fixed params - Male offset 

EM  Survey Selectivity Time 
blocks? P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 

all EMs - 4 
fisheries 

F1 - double normal No   –10   –999     2.95    1 
F2 - logistic No                        
F3 - double normal No   –10  1.93 –999        –999 1 
F4 - logistic No –5 1                     

CI EM - 
complete 
data 

S1 - double normal 

No 

              1 
S2 - logistic                        
S3 - double normal   –10   –10         1 
S4 - double normal   –10             
S5 - double normal   –10   –10 –999 –1      
S6 - double normal   –10   –999 –999     3.4 –1.9  
S7 - double normal   –10     –999               

DFA EM - 
complete 
data 

SDFA - random walk No 
                        

CI EM - 
missing data 

S1 - double normal 

No 

              1 
S2 - logistic                        
S3 - double normal   –10   –10         1 
S4 - double normal   –10             
S5 - double normal   –10   –10 –999 –1      
S6 - double normal   –10   –999 –999     3.4 –1.9  
S7 - double normal   –10     –999               

DFA EM - 
missing data SDFA - random walk Yes                         
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